Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!

Abstract

Mobilizing bone cells to the head, astutely referred to as ‘bonehead’ therapeutic approach, represents a major discipline of regenerative medicine. The last decade has witnessed mounting evidence supporting the capacity of bone marrow (BM)-derived cells to mobilize from BM to peripheral blood (PB), eventually finding their way to the injured brain. This homing action is exemplified in BM stem cell mobilization following ischemic brain injury. Here, I review accumulating laboratory studies implicating the role of therapeutic mobilization of transplanted BM stem cells for brain plasticity and remodeling in stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Herzog EL, Chai L, Krause DS . Plasticity of marrow-derived stem cells. Blood 2003; 102: 3483–3493.

    CAS  PubMed  Google Scholar 

  2. Munoz-Elias G, Woodbury D, Black IB . Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor function. Stem Cells 2003; 21: 437–448.

    PubMed  Google Scholar 

  3. Hess DC, Borlongan CV . Cell-based therapy in ischemic stroke. Expert Rev Neurother 2008; 8: 1193–1201.

    CAS  PubMed  Google Scholar 

  4. Hara K, Yasuhara T, Maki M, Matsukawa N, Masuda T, Yu SJ et al. Neural progenitor NT2N cell lines from teratocarcinoma for transplantation therapy in stroke. Prog Neurobiol 2008; 85: 318–334.

    CAS  PubMed  Google Scholar 

  5. Hess DC, Borlongan CV . Stem cells and neurological diseases. Cell Prolif 2008; 1: 94–114.

    Google Scholar 

  6. Chopp M, Steinberg GK, Kondziolka D, Lu M, Bliss TM, Li Y et al. Who's in favor of translational cell therapy for stroke: STEPS forward please? Cell Transplant 2009; 18: 691–693.

    PubMed  Google Scholar 

  7. Stem Cell Therapies as an Emerging Paradigm in Stroke Participants. Stem Cell Therapies as an Emerging Paradigm in Stroke (STEPS): bridging basic and clinical science for cellular and neurogenic factor therapy in treating stroke. Stroke 2009; 40: 510–515.

    Google Scholar 

  8. Borlongan CV, Chopp M, Steinberg GK, Bliss TM, Li Y, Lu M et al. Potential of stem/progenitor cells in treating stroke: the missing steps in translating cell therapy from laboratory to clinic. Regen Med 2008; 3: 249–250.

    PubMed  Google Scholar 

  9. Kondziolka D, Wechsler L, Goldstein S, Meltzer C, Thulborn KR, Gebel J et al. Transplantation of cultured human neuronal cells for patients with stroke. Neurology 2000; 55: 565–569.

    CAS  PubMed  Google Scholar 

  10. Meltzer CC, Kondziolka D, Villemangne VL, Wechsler L, Goldstein S, Thulborn KR et al. Serial [18F] fluorodeoxyglucose positron emission tomography after human neuronal implantation for stroke. Neurosurgery 2001; 49: 586–591.

    CAS  PubMed  Google Scholar 

  11. Nelson PT, Kondziolka D, Wechsler L, Goldstein S, Gebel J, DeCesare S et al. Clonal human (hNT) neuron grafts for stroke therapy: neuropathology in a patient 27 months after implantation. Am J Pathol 2002; 160: 1201–1206.

    PubMed  PubMed Central  Google Scholar 

  12. Lapidot T, Kollet O . The brain-bone-blood triad: traffic lights for stem-cell homing and mobilization. Hematology Am Soc Hematol Educ Program 2010; 2010: 1–6.

    PubMed  Google Scholar 

  13. Lapidot T, Dar A, Kollet O . How do stem cells find their way home? Blood 2005; 106: 1901–1910.

    Article  CAS  PubMed  Google Scholar 

  14. Nervi B, Link DC, DiPersio JF . Cytokines and hematopoietic stem cell mobilization. J Cell Biochem 2006; 99: 690–670.

    CAS  PubMed  Google Scholar 

  15. Papayannopoulou T, Scadden DT . Stem-cell ecology and stem cells in motion. Blood 2008; 111: 3923–3930.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zimmermann S, Martens UM . Telomeres, senescence, and hematopoietic stem cells. Cell Tissue Res 2008; 331: 79–90.

    PubMed  Google Scholar 

  17. Geiger H, Rudolph KL . Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol 2009; 230: 360–365.

    Google Scholar 

  18. Zimmermann S, Voss M, Kaiser S, Kapp U, Waller CF, Martens UM . Lack of telomerase activity in human mesenchymal stem cells. Leukemia 2003; 17: 1146–1149.

    CAS  PubMed  Google Scholar 

  19. Bruder SP, Jaiswal N, Haynesworth SE . Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 1997; 64: 278–294.

    CAS  PubMed  Google Scholar 

  20. Muraglia A, Cancedda R, Quarto R . Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000; 113: 1161–1166.

    CAS  PubMed  Google Scholar 

  21. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R, Quarto R . Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol 2000; 28: 707–715.

    CAS  PubMed  Google Scholar 

  22. Pochampally RR, Smith JR, Ylostalo J, Prockop DJ . Serum deprivation of human marrow stromal cells (hMSCs) selects for a subpopulation of early progenitor cells with enhanced expression of OCT-4 and other embryonic genes. Blood 2004; 103: 1647–1652.

    CAS  PubMed  Google Scholar 

  23. Kobune M, Kawano Y, Ito Y, Chiba H, Nakamura K, Tsuda H et al. Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobble- stone area-supporting cells. Exp Hematol 2003; 31: 715–722.

    CAS  PubMed  Google Scholar 

  24. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    CAS  PubMed  Google Scholar 

  25. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 1999; 85: 221–228.

    CAS  PubMed  Google Scholar 

  26. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

    CAS  PubMed  Google Scholar 

  27. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lin Y, Weisdorf DJ, Solovey A, Hebbel RP . Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000; 105: 71–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarty JH . Cell adhesion and signaling networks in brain neurovascular units. Curr Opin Hematol 2009; 16: 209–214.

    PubMed  PubMed Central  Google Scholar 

  30. Lapergue B, Mohammad A, Shuaib A . Endothelial progenitor cells and cerebroascular diseases. Pror Neurobiol 2007; 83: 349–362.

    CAS  Google Scholar 

  31. Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

    CAS  PubMed  Google Scholar 

  32. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otem M et al. In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 2000; 95: 3106–3112.

    CAS  PubMed  Google Scholar 

  33. Ingram DA, Caplice NM, Yoder MC . Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood 2005; 106: 1525–1531.

    CAS  PubMed  Google Scholar 

  34. Rustemeyer P, Wittkowski W, Jurk K, Koller A . Optimized flow cytometric analysis of endothelial progenitor cells in peripheral blood. J Immunoassay Immunochem 2006; 27: 77–88.

    CAS  PubMed  Google Scholar 

  35. Kocher AA, Schuster MD, Bonaros N, Lietz K, Xiang G, Martens TP et al. Myocardial homing and neovascularization by human bone marrow angioblasts is regulated by IL-8/Gro CXC chemokines. J Mol Cell Cardiol 2006; 40: 455–464.

    CAS  PubMed  Google Scholar 

  36. Imanishi T, Hano T, Nishio I . Estrogen reduces endothelial progenitor cell senescence through augmentation of telomerase activity. J Hypertens 2005; 23: 1699–1706.

    CAS  PubMed  Google Scholar 

  37. Zheng H, Shen CJ, Qiu FY, Zhao YB, Fu GS . Stromal cell-derived factor 1alpha reduces senescence of endothelial progenitor subpopulation in lectin-binding and DiLDL-uptaking cell through telomerase activation and telomere elongation. J Cell Physiol 2010; 223: 757–763.

    CAS  PubMed  Google Scholar 

  38. Kucia M, Reca R, Campbell FR, Zuba-Surma E, Majka M, Ratajczak J et al. A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow. Leukemia 2006; 20: 857–869.

    CAS  PubMed  Google Scholar 

  39. Zuba-Surma EK, Kucia M, Wu W, Klich I, Lillard Jr JW, Ratajczak J et al. Very small embryonic-like stem cells are present in adult murine organs: ImageStream-based morphological analysis and distribution studies. Cytometry A 2008; 73A: 1116–1127.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hocking AM, Gibran NS . Mesenchymal stem cells: paracrine signaling and differentiation during cutaneous wound repair. Exp Cell Res 2010; 316: 2213–2219.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 5: 1–9.

    Google Scholar 

  42. Kucia M, Halasa M, Wysoczynski M, Baskiewicz-Masiul M, Moldenhawer S, Zuba-Surma E et al. Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood: preliminary report. Leukemia 2007; 21: 297–303.

    CAS  PubMed  Google Scholar 

  43. Shin DM, Zuba-Surma EK, Wu W, Ratajczak J, Wysoczynski M, Ratajczak MZ et al. Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4(+) very small embryonic like stem cells. Leukemia 2009; 23: 2042–2051.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Shin DM, Liu R, Klich I, Wu W, Ratajczak J, Kucia M et al. Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia 2010; 24: 1450–1461.

    CAS  PubMed  Google Scholar 

  45. Sovalat H, Scrofani M, Eidenschenk A, Pasquet S, Rimelen V, Hénon P . Identification and isolation from either adult human bone marrow or G-CSF mobilized peripheral blood of CD34+/CD133+/CXCR4+/Lin-CD45- cells, featuring morphological, molecular and phenotypic characteristics of very small embryonic-like (VSEL) stem cells. Exp Hematol 2011; 39: 495.

    CAS  PubMed  Google Scholar 

  46. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    CAS  PubMed  Google Scholar 

  47. Imai K, Kobayashi M, Wang J, Shinobu N, Yoshida H, Hamada J et al. Selective secretion of chemoattractants for haemopoietic progenitor cells in bone marrow endothelial cells: a possible role in homing of haemopoietic progenitor cells to bone marrow. Br J Haematol 1999; 106: 905–911.

    CAS  PubMed  Google Scholar 

  48. Pablos JL, Amara A, Bouloc A, Santiago B, Caruz A, Galindo M et al. Stromal-cell derived factor is expressed by dendritic cells and endothelium in human skin. Am J Pathol 1999; 155: 1577–1586.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kollet O, Shivtiel S, Chen YQ, Suriawinata J, Thung SN, Dabeva MD et al. HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 2003; 112: 160–169.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Stumm RK, Rummel J, Junker V, Culmsee C, Pfeiffer M, Krieglstein J et al. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J Neurosci 2002; 22: 5865–5878.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dar A, Kollet O, Lapidot T . Mutual, reciprocal SDF-1/CXCR4 interactions between hematopoietic and bone marrow stromal cells regulate human stem cell migration and development in NOD/SCID chimeric mice. Exp Hematol 2006; 34: 967–975.

    CAS  PubMed  Google Scholar 

  52. Spiegel A, Kalinkovich A, Shivtiel S, Kollet O, Lapidot T . Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2008; 3: 484–492.

    CAS  PubMed  Google Scholar 

  53. Kalinkovich A, Spiegel A, Shivtiel S, Kollet O, Jordaney N, Piacibello W et al. Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun 2009; 23: 1059–1065.

    CAS  PubMed  Google Scholar 

  54. Aicher A, Kollet O, Heeschen C, Liebner S, Urbich C, Ihling C et al. The Wnt antagonist Dickkopf-1 mobilizes vasculogenic progenitor cells via activation of the bone marrow endosteal stem cell niche. Circ Res 2008; 103: 796–803.

    CAS  PubMed  Google Scholar 

  55. Spiegel A, Shivtiel S, Kalinkovich A, Lundin A, Netzer N, Goichberg P et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34(+) cells through Wnt signaling. Nat Immunol 2007; 8: 1123–1131.

    CAS  PubMed  Google Scholar 

  56. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274–283.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Spiegel A, Kalinkovich A, Shivtiel S, Kollet O, Lapidot T . Stem cell regulation via dynamic interactions of the nervous and immune systems with the microenvironment. Cell Stem Cell 2008; 3: 484–492.

    CAS  PubMed  Google Scholar 

  58. Hennemann B, Ickenstein G, Sauerbruch S, Luecke K, Haas S, Horn N et al. Mobilization of CD34+ hematopoietic cells, colony-forming cells and long-term culture-initiating cells into the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy 2008; 10: 303–311.

    CAS  PubMed  Google Scholar 

  59. Dunac A, Frelin C, Popolo-Blondeau M, Chatel M, Mahagne MH, Philip PJ . Neurological and functional recovery in human stroke are associated with peripheral blood CD34+ cell mobilization. J Neurol 2007; 254: 327–332.

    PubMed  Google Scholar 

  60. Chang YC, Shyu WC, Lin SZ, Li H . Regenerative therapy for stroke. Cell Transplant 2007; 16: 171–181.

    PubMed  Google Scholar 

  61. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 2004; 114: 330–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chernykh ER, Shevela EY, Leplina OY, Tikhonova MA, Ostanin AA, Kulagin AD et al. Characteristics of bone marrow cells under conditions of impaired innervation in patients with spinal trauma. Bull Exp Biol Med 2006; 141: 117–120.

    CAS  PubMed  Google Scholar 

  63. Hwang WS, Chen SH, Lin CH, Chang HK, Chen WC, Lin MT . Human umbilical cord blood-derived CD34+ cells can be used as a prophylactic agent for experimental heatstroke. J Pharmacol Sci 2008; 106: 46–55.

    CAS  PubMed  Google Scholar 

  64. Chen SH, Chang FM, Chang HK, Chen WC, Huang KF, Lin MT . Human umbilical cord blood-derived CD34+ cells cause attenuation of multiorgan dysfunction during experimental heatstroke. Shock 2007; 27: 663–671.

    CAS  PubMed  Google Scholar 

  65. Zhao ZM, Li HJ, Liu HY, Lu SH, Yang RC, Zhang QJ et al. Intraspinal transplantation of CD34+ human umbilical cord blood cells after spinal cord hemisection injury improves functional recovery in adult rats. Cell Transplant 2004; 13: 113–122.

    PubMed  Google Scholar 

  66. Nishio Y, Koda M, Kamada T, Someya Y, Yoshinaga K, Okada S et al. The use of hemopoietic stem cells derived from human umbilical cord blood to promote restoration of spinal cord tissue and recovery of hindlimb function in adult rats. J Neurosurg Spine 2006; 5: 424–433.

    PubMed  Google Scholar 

  67. Garbuzova-Davis S, Willing AE, Zigova T, Saporta S, Justen EB, Lane JC et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: distribution, migration, and differentiation. J Hematother Stem Cell Res 2003; 12: 255–270.

    CAS  PubMed  Google Scholar 

  68. Nikolic WV, Hou H, Touan T, Zhu Y, Giunta B, Sanberg CD et al. Peripherally administered human umbilical cord blood cells reduce parenchymal and vascular beta-amyloid deposits in Alzheimer mice. Stem Cells Dev 2008; 17: 423–439.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bachstetter AD, Pabon MM, Cole MJ, Hudson CE, Sanberg PR, Wiling AE et al. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neurosci 2008; 9: 22.

    PubMed  PubMed Central  Google Scholar 

  70. Bajada S, Mazakova I, Richardson JB, Ashammakhi N . Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2008; 2: 169–183.

    CAS  PubMed  Google Scholar 

  71. Wojakowski W, Kucia M, Kazmierski M, Ratajczak MZ, Tendera M . Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart 2008; 94: 27–33.

    CAS  PubMed  Google Scholar 

  72. Pai M, Zacharoulis D, Milicevic MN, Helmy S, Jiao LR, Levicar N et al. Autologous infusion of expanded mobilized adult bone marrow-derived CD34+ cells into patients with alcoholic liver cirrhosis. Am J Gastroenterol 2008; 103: 1952–1958.

    CAS  PubMed  Google Scholar 

  73. Friedenstein AJ, Chailakhjan RK, Lalykina KS . The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Tissue Kinet 1970; 3: 393–403.

    CAS  Google Scholar 

  74. Gronthos S, Simmons PJ . The biology and application of human bone marrow stromal cell precursors. J Hematother 1996; 5: 15–23.

    CAS  PubMed  Google Scholar 

  75. Haynesworth SE, Baber MA, Caplan AI . Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 1992; 13: 69–80.

    CAS  PubMed  Google Scholar 

  76. Pereira RF, O’Hara MD, Laptev AV, Halford KW, Pollard MD, Class R et al. Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci USA 1998; 95: 1142–1147.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Prockop DJ . Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276: 71–74.

    CAS  PubMed  Google Scholar 

  78. Pittenger MF, Mackay MA, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    CAS  PubMed  Google Scholar 

  79. Hamada H, Kobune M, Nakamura K, Kawano Y, Kato K, Honmou O et al. Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci 2005; 96: 149–156.

    CAS  PubMed  Google Scholar 

  80. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H et al. Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol 2006; 199: 56–66.

    CAS  PubMed  Google Scholar 

  81. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Ishii K, Kobune M et al. Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol Ther 2005; 11: 96–104.

    CAS  PubMed  Google Scholar 

  82. Bang OY, Lee JS, Lee PH, Lee G . Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 2005; 57: 874–882.

    PubMed  Google Scholar 

  83. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp M . Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci 2001; 189: 49–57.

    CAS  PubMed  Google Scholar 

  84. Chen J, Wang L, Zhang Z, Lu D, Lu M, Chopp M . Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001; 32: 1005–1011.

    CAS  PubMed  Google Scholar 

  85. Chopp M, Li Y . Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1: 92–100.

    PubMed  Google Scholar 

  86. Li Y, Chen J, Chopp M . Adult bone marrow transplantation after stroke in adult rats. Cell Transplant 2001; 10: 31–40.

    CAS  PubMed  Google Scholar 

  87. Li Y, Chen J, Wang L, Lu M, Chopp M . Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 2002; 56: 1666–1672.

    Google Scholar 

  88. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005; 49: 407–417.

    PubMed  Google Scholar 

  89. Rempe DA, Kent TA . Using bone marrow stromal cells for treatment of stroke. Neurology 2002; 59: 486–487.

    PubMed  Google Scholar 

  90. Song S, Kamath S, Mosquera D, Zigova T, Sanberg P, Vesely DL et al. Expression of brain natriuretic peptide by human bone marrow stromal cells. Exp Neurol 2004; 185: 191–197.

    CAS  PubMed  Google Scholar 

  91. Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G et al. Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant 2007; 16: 159–169.

    PubMed  Google Scholar 

  92. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 2007; 27: 6–13.

    PubMed  Google Scholar 

  93. Chen X, Li Y, Katakowski M, Zhang L, Chen J, Xu Y et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002; 22: 275–279.

    PubMed  Google Scholar 

  94. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003; 92: 692–699.

    CAS  PubMed  Google Scholar 

  95. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX et al. Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology 2002; 59: 514–523.

    CAS  PubMed  Google Scholar 

  96. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res 2003; 73: 778–786.

    CAS  PubMed  Google Scholar 

  97. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M et al. Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 2004; 1030: 19–27.

    CAS  PubMed  Google Scholar 

  98. Zhang ZG, Zhang L, Jiang Q, Zhang R, Davies K, Powers C et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000; 106: 829–838.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Benraiss A, Chmielnicki E, Lerner K, Roh D, Goldman SA . Adenoviral brain-derived neurotrophic factor induces both neostriatal and olfactory neuronal recruitment from endogenous progenitor cells in the adult forebrain. J Neurosci 2001; 21: 6718–6731.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Ay I, Sugimori H, Finklestein SP . Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats. Brain Res Mol Brain Res 2001; 87: 71–80.

    CAS  PubMed  Google Scholar 

  101. Rosenblatt S, Irikura K, Caday CG, Finklestein SP, Moskowitz MA . Basic fibroblast growth factor dilates rat pial arterioles. J Cereb Blood Flow Metab 1994; 14: 70–74.

    CAS  PubMed  Google Scholar 

  102. Kurozumi K, Nakamura K, Tamiya T, Kawano Y, Kobune M, Hirai S et al. BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol Ther 2004; 9: 189–197.

    CAS  PubMed  Google Scholar 

  103. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D et al. Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke 2005; 36: 2725–2730.

    CAS  PubMed  Google Scholar 

  104. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D et al. Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab 2006; 26: 1176–1188.

    CAS  PubMed  Google Scholar 

  105. Dezawa M, Hoshino M, Ide C . Treatment of neurodegenerative diseases using adult bone marrow stromal cell derived neurons. Expert Opin Biol Ther 2005; 5: 427–435.

    PubMed  Google Scholar 

  106. Chen J, Li Y, Chopp M . Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 2000; 39: 711–716.

    CAS  PubMed  Google Scholar 

  107. Chen J, Li Y, Wang L, Lu M, Chopp M . Caspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci 2002; 199: 17–24.

    CAS  PubMed  Google Scholar 

  108. Chen J, Li Y, Zhang R, Katakowski M, Gautam SC, Xu Y et al. Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res 2004; 1005: 21–28.

    CAS  PubMed  Google Scholar 

  109. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J et al. Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience 2006; 137: 393–399.

    CAS  PubMed  Google Scholar 

  110. Li Y, Chen J, Zhang CL, Wang L, Lu D, Katakowski M et al. Gliosis and brain remodeling after treatment of stroke in rats with marrow stromal cells. Glia 2005; 49: 407–417.

    PubMed  Google Scholar 

  111. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 2007; 27: 6–13.

    PubMed  Google Scholar 

  112. Gao Q, Li Y, Chopp M . Bone marrow stromal cells increase astrocyte survival via upregulation of phosphoinositide 3-kinase/threonine protein kinase and mitogen activated protein kinase kinase/extracellular signal-regulated kinase pathways and stimulate astrocyte trophic factor gene expression after anaerobic insult. Neuroscience 2005; 136: 123–134.

    CAS  PubMed  Google Scholar 

  113. Gao Q, Katakowski M, Chen X, Li Y, Chopp M . Human marrow stromal cells enhance connexin43 gap junction intercellular communication in cultured astrocytes. Cell Transplant 2005; 14: 109–117.

    PubMed  Google Scholar 

  114. Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A et al. Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience 2006; 141: 687–695.

    CAS  PubMed  Google Scholar 

  115. Li Y, McIntosh K, Chen J, Zhang C, Gao Q, Borneman J et al. Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol 2006; 198: 313–325.

    CAS  PubMed  Google Scholar 

  116. Ceradini DJ, Gurtner GC . Homing to hypoxia: HIF-1 as a mediator of progenitor cell recruitment to injured tissue. Trends Cardiovasc Med 2005; 15: 57–63.

    CAS  PubMed  Google Scholar 

  117. Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 2003; 108: 2710–2715.

    PubMed  Google Scholar 

  118. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  119. Murohara T, Ikeda H, Duan J, Shintani S, Sasaki K, Egucji H et al. Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. J Clin Invest 2000; 105: 1527–1536.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood 2000; 95: 952–958.

    CAS  PubMed  Google Scholar 

  121. Schatteman GC, Awad O . Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec A Discov Mol Cell Evol Biol 2004; 276: 13–21.

    PubMed  Google Scholar 

  122. Khakoo AY, Finkel T . Endothelial progenitor cells. Annu Rev Med 2005; 56: 79–101.

    CAS  PubMed  Google Scholar 

  123. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 1998; 91: 3527–3561.

    CAS  PubMed  Google Scholar 

  124. Ghani U, Shulaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T et al. Endothelial progenitor cells during cerebrovascular disease. Stroke 2005; 36: 151–153.

    PubMed  Google Scholar 

  125. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003; 348: 593–600.

    PubMed  Google Scholar 

  126. Ito H, Rovira II, Bloom ML, Takeda K, Ferrans VJ, Quyyumi AA et al. Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 1999; 59: 5875–5877.

    CAS  PubMed  Google Scholar 

  127. Kreipe H, Radzun HJ, Schumacher U, Parwaresch MR . Lectin binding and surface glycoprotein pattern of human macrophage populations. Histochemistry 1986; 86: 201–206.

    CAS  PubMed  Google Scholar 

  128. Lougheed M, Moore ED, Scriven DR, Steinbrecher UP . Uptake of oxidized LDL by macrophages differs from that of acetyl LDL and leads to expansion of an acidic endolysosomal compartment. Arterioscler Thromb Vasc Biol 1999; 19: 1881–1890.

    CAS  PubMed  Google Scholar 

  129. Zengin E, Chalajour F, Gehling UM, Ito WD, Treede H, Lauke H et al. Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 2006; 133: 1543–1551.

    CAS  PubMed  Google Scholar 

  130. Borlongan CV, Ling JG, Dillon-Carter O, Yu G, Hadman M, Cheng C et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004; 1010: 108–116.

    CAS  PubMed  Google Scholar 

  131. Chopp M, Li Y . Treatment of neural injury with marrow stromal cells. Lancet Neurol 2002; 1: 92–100.

    PubMed  Google Scholar 

  132. Nan Z, Grande A, Sanberg CD, Sanberg PR, Low WC . Infusion of human umbilical cord blood ameliorates neurologic deficits in rats with hemorrhagic brain injury. Ann NY Acad Sci 2005; 1049: 84–96.

    PubMed  Google Scholar 

  133. Taguchi A, Soma T, Tanaka H, Kanda T, Nishimura H, Yoshikawa H et al. Administration of CD34+ cells after stroke enhances neurogenesis via angiogenesis in a mouse model. J Clin Invest 2004; 114: 330–338.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Vendrame M, Cassady J, Newcomb J, Butler T, Pennypacker KR, Zigova T et al. Infusion of human umbilical cord blood cells in a rat model of stroke dose dependently rescues behavioral deficits and reduces infarct volume. Stroke 2004; 35: 2390–2395.

    PubMed  Google Scholar 

  135. Willing AE, Lixian J, Milliken M, Poulos S, Zigova T, Song S et al. Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 2003; 73: 296–307.

    CAS  PubMed  Google Scholar 

  136. Hristov M, Weber C . Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 2004; 8: 498–508.

    PubMed  PubMed Central  Google Scholar 

  137. Carmeliet P . Angiogenesis in life, disease and medicine. Nature 2005; 438: 932–936.

    CAS  PubMed  Google Scholar 

  138. Masuda H, Asahara T . Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 2003; 58: 390–398.

    CAS  PubMed  Google Scholar 

  139. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998; 92: 362–367.

    CAS  PubMed  Google Scholar 

  140. Asahara T, Murohara T, Sullivan A, Silver M, van der Zeer R, Li T et al. Isolation of progenitor endothelial cells for angiogenesis. Science 1997; 275: 964.

    CAS  PubMed  Google Scholar 

  141. Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A et al. Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 2004; 103: 2577–2584.

    CAS  PubMed  Google Scholar 

  142. Fadini GP . An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 2008; 51: 1091–1094.

    CAS  PubMed  Google Scholar 

  143. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH, Zhu JH . Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci 2004; 107: 273–280.

    CAS  Google Scholar 

  144. Pirro M, Schillaci G, Menecali C, Bagalia F, Paltriccia R, Vaudo G et al. Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 2007; 25: 2093–2099.

    CAS  PubMed  Google Scholar 

  145. Umemura T, Soga J, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D et al. Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 2008; 21: 1203–1209.

    CAS  PubMed  Google Scholar 

  146. Del Papa N, Quirici N, Soligo D, Scavulo C, Cortiana M, Borsotti C et al. Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 2006; 54: 2605–2615.

    CAS  PubMed  Google Scholar 

  147. Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y . Defective vasculogenesis in systemic sclerosis. Lancet 2004; 364: 603–610.

    CAS  PubMed  Google Scholar 

  148. Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C . Impaired progenitor cell activity in age-related endothelial dysfunction. JACC 2005; 45: 1441–1448.

    CAS  PubMed  Google Scholar 

  149. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al. Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 2004; 24: 1442–1447.

    CAS  PubMed  Google Scholar 

  150. Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A . Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 2006; 187: 423–432.

    CAS  PubMed  Google Scholar 

  151. Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK et al. Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 2006; 152: 190–195.

    PubMed  Google Scholar 

  152. Botta R, Gao E, Stassi G, Bonci D, Relosi E, Zwas D et al. Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34+KDR+ cells. FASEB J 2004; 18: 1392–1394.

    CAS  PubMed  Google Scholar 

  153. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634–637.

    CAS  PubMed  Google Scholar 

  154. Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G et al. Transplantation of low dose CD34+KDR+ cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J 2004; 18: 1737–1739.

    CAS  PubMed  Google Scholar 

  155. Rouhl RP, van Oostenbrugge RJ, Damoiseaux J, Tervaert JW, Lodder J . Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 2008; 39: 2158–2165.

    PubMed  Google Scholar 

  156. Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW et al. Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 2005; 97: 756–762.

    CAS  PubMed  Google Scholar 

  157. Li ZQ, Zhang M, Jing YZ, Zhang WW, Liu Y, Cui LJ et al. The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 2007; 115: 52–56.

    PubMed  Google Scholar 

  158. Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, Penarrubia MJ, de la Fuente L et al. Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 2004; 95: 742–748.

    CAS  PubMed  Google Scholar 

  159. Meluzin J, Janousek S, Mayer J, Groch L, Hornacek I, Hlinomaz O et al. Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 2008; 128: 185–192.

    PubMed  Google Scholar 

  160. Meluzin J, Mayer J, Groch L, Janousek S, Hornacek I, Hlinomaz O et al. Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 2006; 152: 975.

    PubMed  Google Scholar 

  161. Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F et al. Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 2006; 151: 192–197.

    PubMed  Google Scholar 

  162. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al. Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 2003; 107: 2294–2302.

    PubMed  Google Scholar 

  163. Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV et al. Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 2004; 110: 213–218.

    Google Scholar 

  164. Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT Study. JACC 2005; 46: 1651–1658.

    PubMed  Google Scholar 

  165. Strauer BE, Breh M, Zeus T, Kostering M, Hernandez A, Sorg RV et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002; 106: 1913–1918.

    PubMed  Google Scholar 

  166. Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al. The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 2006; 114: 114–119.

    Google Scholar 

  167. Dobert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R et al. Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with FDG-PET and thallium SPECT. Eur J Nucl Med Mol Imaging 2004; 31: 1146–1151.

    PubMed  Google Scholar 

  168. Lev EI, Kleiman NS, Birnbaum Y, Harris D, Korbling M, Estrov Z . Circulating endothelial progenitor cells and coronary collaterals in patients with non-ST segment elevation myocardial infarction. J Vasc Res 2005; 42: 408–414.

    PubMed  Google Scholar 

  169. Hristov M, Heussen N, Schober A, Weber C . Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med 2006; 10: 727–733.

    CAS  PubMed  Google Scholar 

  170. Dimmeler S, Zelher AM, Schneider MD . Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 2005; 115: 572–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Higashi Y, Kimura M, Hara K, Noma K, Jitsuki D, Nakagawa K et al. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 2004; 109: 1215–1218.

    PubMed  Google Scholar 

  172. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 2002; 360: 427.

    PubMed  Google Scholar 

  173. Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K et al. Circulating cd34-positive cells provide an index of cerebrovascular function. Circulation 2004; 109: 2972–2975.

    PubMed  Google Scholar 

  174. Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T et al. Endothelial progenitor cells during cerebrovascular disease. Stroke 2005; 36: 151–153.

    PubMed  Google Scholar 

  175. Komitova M, Mattsson B, Johansson BB, Eriksson PS . Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 2005; 36: 1278–1282.

    PubMed  Google Scholar 

  176. Zhang RL, Zhang ZG, Zhang L, Chopp M . Proliferation and differentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 2001; 105: 33–41.

    CAS  PubMed  Google Scholar 

  177. Kucia M, Zhang YP, Reca R, Wysoczynski M, Machalinski B, Majka M et al. Cells enriched in markers of neural tissue-committed stem cells reside in the bone marrow and are mobilized into the peripheral blood following stroke. Leukemia 2006; 20: 18–28.

    CAS  PubMed  Google Scholar 

  178. Ratajczak MZ, Kim CH, Wojakowski W, Janowska-Wieczorek A, Kucia M, Ratajczak J . Innate immunity as orchestrator of stem cell mobilization. Leukemia 2010; 24: 1667–1675.

    CAS  PubMed  Google Scholar 

  179. Levesque JP, Helwani FM, Winkler IG . The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 2010; 24: 1979–1992.

    PubMed  Google Scholar 

  180. Salem HK, Thiemermann C . Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 2010; 28: 585–596.

    CAS  PubMed  Google Scholar 

  181. Mund JA, Ingram DA, Yoder MC, Case J . Endothelial progenitor cells and cardiovascular cell-based therapies. Cytotherapy 2009; 11: 103–113.

    PubMed  Google Scholar 

  182. Szczot M, Wojtowicz T, Mozrzymas JW . GABAergic and glutamatergic currents in hippocampal slices and neuronal cultures show profound differences: a clue to a potent homeostatic modulation. J Physiol Pharmacol 2010; 61: 501–506.

    CAS  PubMed  Google Scholar 

  183. Gharib SA, Dayyat EA, Khalyfa A, Kim J, Clair HB, Kucia M et al. Intermittent hypoxia mobilizes bone marrow-derived very small embryonic-like stem cells and activates developmental transcriptional programs in mice. Sleep 2010; 33: 1–8.

    CAS  Google Scholar 

  184. Burns TC, Verfaillie CM, Low WC . Stem cells for ischemic brain injury: a critical review. J Comp Neurol 2009; 515: 125–144.

    PubMed  PubMed Central  Google Scholar 

  185. Farin A, Liu CY, Langmoen IA, Apuzzo ML . Biological restoration of central nervous system architecture and function: part 3-stem cell- and cell-based applications and realities in the biological management of central nervous system disorders: traumatic, vascular, and epilepsy disorders. Neurosurgery 2009; 65: 831–859.

    PubMed  Google Scholar 

  186. Dwain I, Xiangpeng Y, Zeng Z, Patricia T, Joh SY . Neural stem cells--a promising potential therapy for brain tumors. Curr Stem Cell Res Ther 2006; 1: 79–84.

    CAS  PubMed  Google Scholar 

  187. Morancho A, Rosell A, Barcia-Bonilla L, Montaner J . Metalloproteinase and stroke size; role for anti-inflammatory treatment. Ann NY Acad Sci 2010; 1207: 123–133.

    CAS  PubMed  Google Scholar 

  188. Wojakowski W, Tendera M, Kucia M, Zuba-Surma E, Paczkowska E, Ciosek J et al. Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. J Am Coll Cardiol 2009; 53: 1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Paczkowska E, Kucia M, Koziarska D, Halasa M, Safranow K, Masiuk M et al. Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke 2009; 4: 1237–1244.

    Google Scholar 

  190. Ratajczak J, Zuba-Surma E, Paczkowska W, Kucia M, Nowacki P, Ratajczak MZ . Stem cells for neural regeneration--a potential application of very small embryonic-like stem cells. J Physiol Pharmacol 2011; 62: 3–12.

    CAS  PubMed  Google Scholar 

  191. Ratajczak MZ, Shin DM, Liu R, Marlicz W, Tarnowski M, Ratajczak J et al. Epiblast/germ line hypothesis of cancer development revisited: lesson from the presence of Oct-4+ cells in adult tissues. Stem Cell Rev 2010; 6: 307–316.

    PubMed Central  Google Scholar 

  192. Ratajczak MZ, Shin DM, Ratajczak J, Kucia M, Bartke A . A novel insight into aging: are there pluripotent very small embryonic-like stem cells (VSELs) in adult tissues overtime depleted in an Igf-1-dependent manner? Aging 2010; 2: 875–883.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ratajczak J, Shin DM, Wan W, Liu R, Masternak MM, Piotrowska K et al. Higher number of stem cells in bone marrow of circulating Igf-1 level low Laron dwarf mice--novel view on Igf-1, stem cells and aging. Leukemia 2011; 25: 729.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Zuba-Surma EK, Klich I, Greco N, Laughlin MJ, Ratajczak J, Ratajczak MZ . Optimization of isolation and further characterization of umbilical-cord-blood-derived very small embryonic/epiblast-like stem cells (VSELs). Eur J Haematol 2010; 84: 34–46.

    CAS  PubMed  Google Scholar 

  195. Zuba-Surma EK, Ratajczak MZ . Overview of very small embryonic-like stem cells (VSELs) and methodology of their identification and isolation by flow cytometric methods. Curr Protoc Cytom 2010; 4: Chapter 9: Unit 9.29.

    Google Scholar 

  196. Snyder EY . The risk of putting something where it does not belong: mesenchymal stem cells produce masses in the brain. Exp Neurol 2011; 230: 75–77.

    PubMed  Google Scholar 

  197. Kucia M, Ratajczak J, Ratajczak MZ . Are bone marrow stem cells plastic or heterogenous--that is the question. Exp Hematol 2005; 33: 613–623.

    PubMed  Google Scholar 

  198. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ . Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006; 20: 1487–1495.

    CAS  PubMed  Google Scholar 

  199. Sadan O, Melamed E, Offen D . Bone-marrow-derived mesenchymal stem cell therapy for neurodegenerative diseases. Expert Opin Biol Ther 2009; 9: 1487–1497.

    CAS  PubMed  Google Scholar 

  200. Kadar K, Kiraly M, Porcsalmy B, Molnar B, Racz GZ, Blazsek J et al. Differentiation potential of stem cells from human dental origin - promise for tissue engineering. J Physiol Phramacol 2009; 60: 167–175.

    Google Scholar 

  201. Borlongan CV, Kaneko Y, Maki M, Yu SJ, Ali M, Allickson JG et al. Menstrual blood cells display stem cell-like phenotypic markers and exert neuroprotection following transplantation in experimental stroke. Stem Cells Dev 2010; 19: 439–452.

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Jeong JA, Gang EJ, Hong SH, Hwang SH, Kim SW, Yang IH et al. Rapid neural differentiation of human cord blood-derived mesenchymal stem cells. NeuroReport 2004; 15: 1731–1734.

    CAS  PubMed  Google Scholar 

  203. Krabbe C, Zimmer J, Meyer M . Neural transdifferentiation of mesenchymal stem cells--a critical review. APMIS 2005; 113: 831–844.

    PubMed  Google Scholar 

  204. Lu P, Blesch A, Tuszynski MH . Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 2004; 77: 174–191.

    CAS  PubMed  Google Scholar 

  205. Zoladz JA, Pilc A, Majerczak J, Grandys M, Zapart-Bukowska J, Duda K . Endurance training increases plasma brain-derived neurotrophic factor concentration in young healthy men. J Physiol Pharmacol 2008; 59: 119–132.

    PubMed  Google Scholar 

  206. Baraniak PR, McDevitt TC . Stem cell paracrine actions and tissue regeneration. Regen Med 2010; 5: 121–143.

    PubMed  Google Scholar 

  207. Ratajczak MZ, Lee H, Wysoczynski M, Wan W, Marlicz W, Laughlin MJ et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010; 24: 976–985.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I extend appreciation to Ms Loren E Glover who provided excellent technical assistance in the final preparation of the manuscript. CVB is supported by James and Esther King Foundation for Biomedical Research Program 1KG01-33966 and NIH R01 5R01NS071956-02, and received research grant support for his projects on bone marrow stem cell therapy for stroke from SanBio Inc., Celgene Cellular Therapeutics, KMPHC and NeuralStem Inc. Some of the stem cell therapy thematic discussions originated from NINDS UO1 5U01NS055914-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C V Borlongan.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borlongan, C. Bone marrow stem cell mobilization in stroke: a ‘bonehead’ may be good after all!. Leukemia 25, 1674–1686 (2011). https://doi.org/10.1038/leu.2011.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.167

Keywords

This article is cited by

Search

Quick links