Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Eμ/miR-125b transgenic mice develop lethal B-cell malignancies

Abstract

MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Willis TG, Dyer MJ . The role of immunoglobulin translocations in the pathogenesis of B-cell malignancies. Blood 2000; 96: 808–822.

    CAS  PubMed  Google Scholar 

  2. Küppers R, Dalla-Favera R . Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene 2001; 20: 5580–5594.

    Article  Google Scholar 

  3. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    Article  CAS  Google Scholar 

  4. Bartel D . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116: 281–297.

    Article  CAS  Google Scholar 

  5. Medina PP, Slack FJ . microRNAs and cancer: an overview. Cell Cycle 2008; 7: 2485–2492.

    Article  CAS  Google Scholar 

  6. Iorio MV, Croce CM . MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 2009; 27: 5848–5856.

    Article  CAS  Google Scholar 

  7. Sonoki T, Iwanaga E, Mitsuya H, Asou N . Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 2005; 19: 2009–2010.

    Article  CAS  Google Scholar 

  8. Bousquet M, Quelen C, Rosati R, Mansat-De Mas V, La Starza R, Bastard C et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J Exp Med 2008; 205: 2499–2506.

    Article  CAS  Google Scholar 

  9. Chapiro E, Russell L, Struski S, Cavé H, Radford-Weiss I, Valle V et al. A new recurrent translocation t(11;14)(q24;q32) involving IGH@ and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia 2010; 24: 1362–1364.

    Article  CAS  Google Scholar 

  10. Tassano E, Acquila M, Tavella E, Micalizzi C, Panarello C, Morerio C . MicroRNA-125b-1 and BLID upregulation resulting from a novel IGH translocation in childhood B-Cell precursor acute lymphoblastic leukemia. Genes Chromosomes Cancer 2010; 49: 682–687.

    Article  CAS  Google Scholar 

  11. Gefen N, Binder V, Zaliova M, Linka Y, Morrow M, Novosel A et al. Hsa-mir-125b-2 is highly expressed in childhood ETV6/RUNX1 (TEL/AML1) leukemias and confers survival advantage to growth inhibitory signals independent of p53. Leukemia 2010; 24: 89–96.

    Article  CAS  Google Scholar 

  12. Klusmann J, Li Z, Böhmer K, Maroz A, Koch M, Emmrich S et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev 2010; 24: 478–490.

    Article  CAS  Google Scholar 

  13. O'Connell R, Chaudhuri A, Rao D, Gibson W, Balazs A, Baltimore D . MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 2010; 107: 14235–14240.

    Article  CAS  Google Scholar 

  14. Bousquet M, Harris MH, Zhou B, Lodish HF . MicroRNA miR-125b causes leukemia. Proc Natl Acad Sci USA 2010; 107: 21558–21563.

    Article  CAS  Google Scholar 

  15. Ooi AG, Sahoo D, Adorno M, Wang Y, Weissman IL, Park CY . MicroRNA-125b expands hematopoietic stem cells and enriches for the lymphoid-balanced and lymphoid-biased subsets. Proc Natl Acad Sci USA 2010; 107: 21505–21510.

    Article  CAS  Google Scholar 

  16. Tomasini R, Samir A, Carrier A, Isnardon D, Cecchinelli B, Soddu S et al. TP53INP1s and homeodomain-interacting protein kinase-2 (HIPK2) are partners in regulating p53 activity. J Biol Chem 2003; 278: 37722–37729.

    Article  CAS  Google Scholar 

  17. Tomasini R, Samir A, Vaccaro M, Pebusque M, Dagorn J, Iovanna J et al. Molecular and functional characterization of the stress-induced protein (SIP) gene and its two transcripts generated by alternative splicing. SIP induced by stress and promotes cell death. J Biol Chem 2001; 276: 44185–44192.

    Article  CAS  Google Scholar 

  18. Tomasini R, Samir A, Pebusque M, Calvo E, Totaro S, Dagorn J et al. P53-dependent expression of the stress-induced protein (SIP). Eur J Cell Biol 2002; 81: 294–301.

    Article  CAS  Google Scholar 

  19. Okamura S, Arakawa H, Tanaka T, Nakanishi H, Ng CC, Taya Y et al. p53DINP1, a p53-inducible gene, regulates p53-dependent apoptosis. Mol Cell 2001; 8: 85–94.

    Article  CAS  Google Scholar 

  20. Akasaka T, Balasas T, Russell LJ, Sugimoto KJ, Majid A, Walewska R et al. Five members of the CEBP transcription factor family are targeted by recurrent IGH translocations in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Blood 2007; 109: 3451–3461.

    Article  CAS  Google Scholar 

  21. Kato N, Kitaura J, Doki N, Komeno Y, Watanabe-Okochi N, Togami K et al. Two types of C/EBPα mutations play distinct but collaborative roles in leukemogenesis: lessons from clinical data and BMT models. Blood 2011; 117: 221–233.

    Article  CAS  Google Scholar 

  22. Watanabe-Okochi N, Oki T, Komeno Y, Kato N, Yuji K, Ono R et al. Possible involvement of RasGRP4 in leukemogenesis. Int J Hematol 2009; 89: 470–481.

    Article  CAS  Google Scholar 

  23. Enomoto Y, Yamanishi Y, Izawa K, Kaitani A, Takahashi M, Maehara A et al. Characterization of leukocyte mono-immunoglobulin-like receptor 7 (LMIR7)/CLM-3 as an activating receptor: its similarities to and differences from LMIR4/CLM-5. J Biol Chem 2010; 285: 35274–35283.

    Article  CAS  Google Scholar 

  24. Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Oki T, Shibata F et al. Functional analysis of activating receptor LMIR4 as a counterpart of inhibitory receptor LMIR3. J Biol Chem 2007; 282: 17997–18008.

    Article  CAS  Google Scholar 

  25. Izawa K, Kitaura J, Yamanishi Y, Matsuoka T, Kaitani A, Sugiuchi M et al. An activating and inhibitory signal from an inhibitory receptor LMIR3/CLM-1: LMIR3 augments lipopolysaccharide response through association with FcRgamma in mast cells. J Immunol 2009; 183: 925–936.

    Article  CAS  Google Scholar 

  26. Yamanishi Y, Kitaura J, Izawa K, Matsuoka T, Oki T, Lu Y et al. Analysis of mouse LMIR5/CLM-7 as an activating receptor: differential regulation of LMIR5/CLM-7 in mouse versus human cells. Blood 2008; 111: 688–698.

    Article  CAS  Google Scholar 

  27. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  Google Scholar 

  28. Komeno Y, Kitaura J, Watanabe-Okochi N, Kato N, Oki T, Nakahara F et al. AID-induced T-lymphoma or B-leukemia/lymphoma in a mouse BMT model. Leukemia 2010; 24: 1018–1024.

    Article  CAS  Google Scholar 

  29. Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 2006; 103: 7024–7029.

    Article  CAS  Google Scholar 

  30. Gironella M, Seux M, Xie M, Cano C, Tomasini R, Gommeaux J et al. Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci USA 2007; 104: 16170–16175.

    Article  CAS  Google Scholar 

  31. Gommeaux J, Cano C, Garcia S, Gironella M, Pietri S, Culcasi M et al. Colitis and colitis-associated cancer are exacerbated in mice deficient for tumor protein 53-induced nuclear protein 1. Mol Cell Biol 2007; 27: 2215–2228.

    Article  CAS  Google Scholar 

  32. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC et al. MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci USA 2010; 107: 14229–14234.

    Article  CAS  Google Scholar 

  33. Medina PP, Nolde M, Slack FJ . OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 2010; 467: 86–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Kiwamu Akagi (Saitama Cancer Institute, Japan) for providing the pEμ/IGH plasmid, Dr Hiroshi Matsuoka (Kobe University, Japan) for helpful discussion and Dr Dovie Wylie for her excellent language support. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and was in part supported by Grant-in-Aid for Scientific Research on Innovative Areas, Global COE Program ‘Center of Education and Research for the Advanced Genome-Based Medicine—For personalized medicine and the control of worldwide infectious diseases’, MEXT, Japan, Grant for Basic and Clinical Research Project from Osaka Cancer Research Foundation 2008, A Research Grant on Priority Areas from Wakayama Medical University 2008, and a grant from the Japan Society for the Promotion Science (JSPS). This work was performed in the Cooperative Research Project of the Institute of Medical Science, Tokyo University. YE is a JSPS research fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to T Kitamura or T Sonoki.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enomoto, Y., Kitaura, J., Hatakeyama, K. et al. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies. Leukemia 25, 1849–1856 (2011). https://doi.org/10.1038/leu.2011.166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2011.166

Keywords

This article is cited by

Search

Quick links