Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement

Abstract

Infant acute lymphoblastic leukemia (ALL) involving mixed-lineage leukemia (MLL) fusions has attracted a huge interest in basic and clinical research because of its prenatal origin, mixed-lineage phenotype, dismal prognosis and extremely short latency. Over 90% of infant ALLs are pro-B ALL harboring the leukemic fusion MLL-AF4. Despite the fact that major achievements have provided a better understanding about the etiology of infant MLL-AF4+ ALL over the last two decades, key questions remain unanswered. Epidemiological and genetic studies suggest that the in utero origin of MLL rearrangements in infant leukemia may be the result of prenatal exposure to genotoxic compounds. In fact, chronic exposure of human embryonic stem cells (hESCs) to etoposide induces MLL rearrangements and makes hESC more prone to acquire subsequent chromosomal abnormalities than postnatal CD34+ cells, linking embryonic exposure to topoisomerase II inhibitors to genomic instability and MLL rearrangements. Unfortunately, very little is known about the nature of the target cell for transformation. Neuron-glial antigen 2 expression was initially claimed to be specifically associated with MLL rearrangements and was recently shown to be readily expressed in CD34+CD38+, but not CD34+CD38− cells suggesting that progenitors rather than stem cells may be the target cell for transformation. Importantly, the recent findings showing that MLL-AF4 rearrangement is present and expressed in mesenchymal stem cells from infant patients with MLLAF4+ ALL challenged our current view of the etiology and cellular origin of this leukemia. It becomes therefore crucial to determine where the leukemia relapses come from and how the tumor–stroma relationship is defined at the molecular level. Finally, MLL-AF4 leukemogenesis has been particularly difficult to model and bona fide MLL-AF4 disease models do not exist so far. It is likely that the current disease models are missing some essential ingredients of leukemogenesis in the human embryo/fetus. We thus propose modeling MLL-AF4+ infant pro-B ALL using prenatal hESCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Caslini C, Alarcon AS, Hess JL, Tanaka R, Murti KG, Biondi A . The amino terminus targets the mixed lineage leukemia (MLL) protein to the nucleolus, nuclear matrix and mitotic chromosomal scaffolds. Leukemia 2000; 14: 1898–1908.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Eguchi M, Eguchi-Ishimae M, Knight D, Kearney L, Slany R, Greaves M . MLL chimeric protein activation renders cells vulnerable to chromosomal damage: an explanation for the very short latency of infant leukemia. Genes Chromosomes Cancer 2006; 45: 754–760.

    CAS  PubMed  Google Scholar 

  3. Eguchi M, Eguchi-Ishimae M, Greaves M . Molecular pathogenesis of MLL-associated leukemias. Int J Hematol 2005; 82: 9–20.

    CAS  PubMed  Google Scholar 

  4. Krivtsov AV, Armstrong SA . MLL translocations, histone modifications and leukaemia stem-cell development. Nat Rev Cancer 2007; 7: 823–833.

    CAS  PubMed  Google Scholar 

  5. Pui CH . Acute lymphoblastic leukemia in children. Curr Opin Oncol 2000; 12: 3–12.

    CAS  PubMed  Google Scholar 

  6. Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T et al. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 2005; 115: 919–929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taketani T, Taki T, Sugita K, Furuichi Y, Ishii E, Hanada R et al. FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood 2004; 103: 1085–1088.

    CAS  PubMed  Google Scholar 

  8. Bardini M, Spinelli R, Bungaro S, Mangano E, Corral L, Cifola I et al. DNA copy-number abnormalities do not occur in infant ALL with t(4;11)/MLL-AF4. Leukemia 2010; 24: 169–176.

    CAS  PubMed  Google Scholar 

  9. Moorman AV, Hagemeijer A, Charrin C, Rieder H, Secker-Walker LM . The translocations, t (11;19)(q23;p13.1) and t (11;19)(q23;p13.3): a cytogenetic and clinical profile of 53 patients. European 11q23 Workshop participants. Leukemia 1998; 12: 805–810.

    CAS  PubMed  Google Scholar 

  10. Ford AM, Ridge SA, Cabrera ME, Mahmoud H, Steel CM, Chan LC et al. In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature 1993; 363: 358–360.

    CAS  PubMed  Google Scholar 

  11. Gale KB, Ford AM, Repp R, Borkhardt A, Keller C, Eden OB et al. Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci USA 1997; 94: 13950–13954.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Alexander FE, Patheal SL, Biondi A, Brandalise S, Cabrera ME, Chan LC et al. Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res 2001; 61: 2542–2546.

    CAS  PubMed  Google Scholar 

  13. Ross JA, Potter JD, Reaman GH, Pendergrass TW, Robison LL . Maternal exposure to potential inhibitors of DNA topoisomerase II and infant leukemia (United States): a report from the Children's cancer group. Cancer Causes Control 1996; 7: 581–590.

    CAS  PubMed  Google Scholar 

  14. Barjesteh van Waalwijk van Doorn-Khosrovani S, Janssen J, Maas LM, Godschalk RW, Nijhuis JG, van Schooten FJ . Dietary flavonoids induce MLL translocations in primary human CD34+ cells. Carcinogenesis 2007; 28: 1703–1709.

    PubMed  Google Scholar 

  15. Blanco JG, Edick MJ, Relling MV . Etoposide induces chimeric Mll gene fusions. FASEB J 2004; 18: 173–175.

    CAS  PubMed  Google Scholar 

  16. Bueno C, Catalina P, Melen GJ, Montes R, Sanchez L, Ligero G et al. Etoposide induces MLL rearrangements and other chromosomal abnormalities in human embryonic stem cells. Carcinogenesis 2009; 30: 1628–1637.

    CAS  PubMed  Google Scholar 

  17. Libura J, Slater DJ, Felix CA, Richardson C . Therapy-related acute myeloid leukemia-like MLL rearrangements are induced by etoposide in primary human CD34+ cells and remain stable after clonal expansion. Blood 2005; 105: 2124–2131.

    CAS  PubMed  Google Scholar 

  18. Libura J, Ward M, Solecka J, Richardson C . Etoposide-initiated MLL rearrangements detected at high frequency in human primitive hematopoietic stem cells with in vitro and in vivo long-term repopulating potential. Eur J Haematol 2008; 81: 185–195.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Moneypenny CG, Shao J, Song Y, Gallagher EP . MLL rearrangements are induced by low doses of etoposide in human fetal hematopoietic stem cells. Carcinogenesis 2006; 27: 874–881.

    CAS  PubMed  Google Scholar 

  20. Zandvliet DW, Hanby AM, Austin CA, Marsh KL, Clark IB, Wright NA et al. Analysis of foetal expression sites of human type II DNA topoisomerase alpha and beta mRNAs by in situ hybridisation. Biochim Biophys Acta 1996; 1307: 239–247.

    PubMed  Google Scholar 

  21. Felix CA . Secondary leukemias induced by topoisomerase-targeted drugs. Biochim Biophys Acta 1998; 1400: 233–255.

    CAS  PubMed  Google Scholar 

  22. Rowley JD, Olney HJ . International workshop on the relationship of prior therapy to balanced chromosome aberrations in therapy-related myelodysplastic syndromes and acute leukemia: overview report. Genes Chromosomes Cancer 2002; 33: 331–345.

    PubMed  Google Scholar 

  23. Chatterjee S, Trivedi D, Petzold SJ, Berger NA . Mechanism of epipodophyllotoxin-induced cell death in poly(adenosine diphosphate-ribose) synthesis-deficient V79 Chinese hamster cell lines. Cancer Res 1990; 50: 2713–2718.

    CAS  PubMed  Google Scholar 

  24. Spector LG, Xie Y, Robison LL, Heerema NA, Hilden JM, Lange B et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children's oncology group. Cancer Epidemiol Biomarkers Prev 2005; 14: 651–655.

    CAS  PubMed  Google Scholar 

  25. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD . Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA 2000; 97: 4790–4795.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ross JA, Potter JD, Robison LL . Infant leukemia, topoisomerase II inhibitors, and the MLL gene. J Natl Cancer Inst 1994; 86: 1678–1680.

    CAS  PubMed  Google Scholar 

  27. Bueno C, Garcia-Castro J, Montes R, Menendez P . Human embryonic stem cells: a potential system for modeling infant leukemia harboring MLL-AF4 fusion gene. Drug Discov Today: Dis Models 2008; 4: 53–60.

    Google Scholar 

  28. Lensch MW, Daley GQ . Scientific and clinical opportunities for modeling blood disorders with embryonic stem cells. Blood 2006; 107: 2605–2612.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Menendez P, Bueno C, Wang L, Bhatia M . Human embryonic stem cells: potential tool for achieving immunotolerance? Stem Cell Rev 2005; 1: 151–158.

    PubMed  Google Scholar 

  30. Edick MJ, Gajjar A, Mahmoud HH, van de Poll ME, Harrison PL, Panetta JC et al. Pharmacokinetics and pharmacodynamics of oral etoposide in children with relapsed or refractory acute lymphoblastic leukemia. J Clin Oncol 2003; 21: 1340–1346.

    CAS  PubMed  Google Scholar 

  31. Catalina P, Cobo F, Cortes JL, Nieto AI, Cabrera C, Montes R et al. Conventional and molecular cytogenetic diagnostic methods in stem cell research: a concise review. Cell Biol Int 2007; 31: 861–869.

    CAS  PubMed  Google Scholar 

  32. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C et al. Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 2008; 7: 76.

    PubMed  PubMed Central  Google Scholar 

  33. Cobo F, Navarro JM, Herrera MI, Vivo A, Porcel D, Hernandez C et al. Electron microscopy reveals the presence of viruses in mouse embryonic fibroblasts but neither in human embryonic fibroblasts nor in human mesenchymal cells used for hESC maintenance: toward an implementation of microbiological quality assurance program in stem cell banks. Cloning Stem Cells 2008; 10: 65–74.

    CAS  PubMed  Google Scholar 

  34. Cortes JL, Sanchez L, Catalina P, Cobo F, Bueno C, Martinez-Ramirez A et al. Whole-blastocyst culture followed by laser drilling technology enhances the efficiency of inner cell mass isolation and embryonic stem cell derivation from good- and poor-quality mouse embryos: new insights for derivation of human embryonic stem cell lines. Stem Cells Dev 2008; 17: 255–267.

    CAS  PubMed  Google Scholar 

  35. Cortes JL, Sanchez L, Ligero G, Gutierrez-Aranda I, Catalina P, Elosua C et al. Mesenchymal stem cells facilitate the derivation of human embryonic stem cells from cryopreserved poor-quality embryos. Hum Reprod 2009; 24: 1844–1851.

    CAS  PubMed  Google Scholar 

  36. Gutierrez-Aranda I, Ramos-Mejia V, Bueno C, Muñoz-López M, Real JP, Macia A et al. Human induced pluripotent stem cells develop teratoma more efficiently and faster than human embryonic stem cells regardless the site of injection. Stem Cells 2010; 28: 1568–1570.

    PubMed  PubMed Central  Google Scholar 

  37. Menendez P, Bueno C, Wang L . Human embryonic stem cells: a journey beyond cell replacement therapies. Cytotherapy 2006; 8: 530–541.

    CAS  PubMed  Google Scholar 

  38. Menendez P, Wang L, Chadwick K, Li L, Bhatia M . Retroviral transduction of hematopoietic cells differentiated from human embryonic stem cell-derived CD45(neg)PFV hemogenic precursors. Mol Ther 2004; 10: 1109–1120.

    CAS  PubMed  Google Scholar 

  39. Montes R, Ligero G, Sanchez L, Catalina P, de la Cueva T, Nieto A et al. Feeder-free maintenance of hESCs in mesenchymal stem cell-conditioned media: distinct requirements for TGF-beta and IGF-II. Cell Res 2009; 19: 698–709.

    CAS  PubMed  Google Scholar 

  40. Ramos-Mejia V, Melen GJ, Sanchez L, Gutierrez-Aranda I, Ligero G, Cortes JL et al. Nodal/Activin signaling predicts human pluripotent stem cell lines prone to differentiate towards the hematopoietic lineage. Mol Ther 2010; 18: 2173–2181.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ramos-Mejia V, Muñoz-López M, García-Pérez JL, Menendez P . iPSC lines which do not silence the expression of the ectopic reprogramming factors may display enhanced propensity to genomic instability. Cell Res 2010; 20: 1092–1095.

    PubMed  Google Scholar 

  42. Greaves M . Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer 2006; 6: 193–203.

    CAS  PubMed  Google Scholar 

  43. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res 1994; 137: S68–S97.

    CAS  PubMed  Google Scholar 

  44. Doll R, Wakeford R . Risk of childhood cancer from fetal irradiation. Br J Radiol 1997; 70: 130–139.

    CAS  PubMed  Google Scholar 

  45. McNally RJ, Eden TO . An infectious aetiology for childhood acute leukaemia: a review of the evidence. Br J Haematol 2004; 127: 243–263.

    PubMed  Google Scholar 

  46. Greaves MF . Speculations on the cause of childhood acute lymphoblastic leukemia. Leukemia 1988; 2: 120–125.

    CAS  PubMed  Google Scholar 

  47. Greaves MF . Aetiology of acute leukaemia. Lancet 1997; 349: 344–349.

    CAS  PubMed  Google Scholar 

  48. Greaves MF, Maia AT, Wiemels JL, Ford AM . Leukemia in twins: lessons in natural history. Blood 2003; 102: 2321–2333.

    CAS  PubMed  Google Scholar 

  49. Greaves MF, Wiemels J . Origins of chromosome translocations in childhood leukaemia. Nat Rev Cancer 2003; 3: 639–649.

    CAS  PubMed  Google Scholar 

  50. Enver T, Tsuzuki S, Brown J, Hong D, Gupta R, Ford T et al. Developmental impact of leukemic fusion genes on stem cell fate. Ann N Y Acad Sci 2005; 1044: 16–23.

    CAS  PubMed  Google Scholar 

  51. Stallcup WB, Cohn M . Correlation of surface antigens and cell type in cloned cell lines from the rat central nervous system. Exp Cell Res 1976; 98: 285–297.

    CAS  PubMed  Google Scholar 

  52. Smith FO, Rauch C, Williams DE, March CJ, Arthur D, Hilden J et al. The human homologue of rat NG2, a chondroitin sulfate proteoglycan, is not expressed on the cell surface of normal hematopoietic cells but is expressed by acute myeloid leukemia blasts from poor-prognosis patients with abnormalities of chromosome band 11q23. Blood 1996; 87: 1123–1133.

    CAS  PubMed  Google Scholar 

  53. Levine JM, Nishiyama A . The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. Perspect Dev Neurobiol 1996; 3: 245–259.

    CAS  PubMed  Google Scholar 

  54. Behm FG, Smith FO, Raimondi SC, Pui CH, Bernstein ID . Human homologue of the rat chondroitin sulfate proteoglycan, NG2, detected by monoclonal antibody 7.1, identifies childhood acute lymphoblastic leukemias with t (4;11) (q21;q23) or t (11;19) (q23;p13) and MLL gene rearrangements. Blood 1996; 87: 1134–1139.

    CAS  PubMed  Google Scholar 

  55. Hilden JM, Smith FO, Frestedt JL, McGlennen R, Howells WB, Sorensen PH et al. MLL gene rearrangement, cytogenetic 11q23 abnormalities, and expression of the NG2 molecule in infant acute myeloid leukemia. Blood 1997; 89: 3801–3805.

    CAS  PubMed  Google Scholar 

  56. Schwartz S, Rieder H, Schlager B, Burmeister T, Fischer L, Thiel E . Expression of the human homologue of rat NG2 in adult acute lymphoblastic leukemia: close association with MLL rearrangement and a CD10(−)/CD24(−)/CD65s(+)/CD15(+) B-cell phenotype. Leukemia 2003; 17: 1589–1595.

    CAS  PubMed  Google Scholar 

  57. Wuchter C, Harbott J, Schoch C, Schnittger S, Borkhardt A, Karawajew L et al. Detection of acute leukemia cells with mixed lineage leukemia (MLL) gene rearrangements by flow cytometry using monoclonal antibody 7.1. Leukemia 2000; 14: 1232–1238.

    CAS  PubMed  Google Scholar 

  58. Zangrando A, Intini F, te Kronnie G, Basso G . Validation of NG2 antigen in identifying BP-ALL patients with MLL rearrangements using qualitative and quantitative flow cytometry: a prospective study. Leukemia 2008; 22: 858–861.

    CAS  PubMed  Google Scholar 

  59. Mauvieux L, Delabesse E, Bourquelot P, Radford-Weiss I, Bennaceur A, Flandrin G et al. NG2 expression in MLL rearranged acute myeloid leukaemia is restricted to monoblastic cases. Br J Haematol 1999; 107: 674–676.

    CAS  PubMed  Google Scholar 

  60. Almeida J, Bueno C, Alguero MC, Sanchez ML, Canizo MC, Fernandez ME et al. Extensive characterization of the immunophenotype and pattern of cytokine production by distinct subpopulations of normal human peripheral blood MHC II+/lineage- cells. Clin Exp Immunol 1999; 118: 392–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bueno C, Almeida J, Lucio P, Marco J, Garcia R, de Pablos JM et al. Incidence and characteristics of CD4(+)/HLA DRhi dendritic cell malignancies. Haematologica 2004; 89: 58–69.

    CAS  PubMed  Google Scholar 

  62. Bueno C, Montes R, Martin L, Prat I, Hernandez MC, Orfao A et al. NG2 antigen is expressed in CD34+ HPCs and plasmacytoid dendritic cell precursors: is NG2 expression in leukemia dependent on the target cell where leukemogenesis is triggered? Leukemia 2008; 22: 1475–1478.

    CAS  PubMed  Google Scholar 

  63. Bueno C, Montes R, Menendez P . The ROCK inhibitor Y-27632 negatively affects the expansion/survival of both fresh and cryopreserved cord blood-derived CD34+ hematopoietic progenitor cells. Stem Cell Rev 2010; 6: 215–223.

    CAS  Google Scholar 

  64. Menendez P, Redondo O, Rodriguez A, Lopez-Berges MC, Ercilla G, Lopez A et al. Comparison between a lyse-and-then-wash method and a lyse-non-wash technique for the enumeration of CD34+ hematopoietic progenitor cells. Cytometry 1998; 34: 264–271.

    CAS  PubMed  Google Scholar 

  65. Matarraz S, Lopez A, Barrena S, Fernandez C, Jensen E, Flores J et al. The immunophenotype of different immature, myeloid and B-cell lineage-committed CD34+ hematopoietic cells allows discrimination between normal/reactive and myelodysplastic syndrome precursors. Leukemia 2008; 22: 1175–1183.

    CAS  PubMed  Google Scholar 

  66. Menendez P, Caballero MD, Prosper F, Del Canizo MC, Perez-Simon JA, Mateos MV et al. The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen. Transfusion 2002; 42: 1159–1172.

    CAS  PubMed  Google Scholar 

  67. Menendez P, Perez-Simon JA, Mateos MV, Caballero MD, Gonzalez M, San-Miguel JF et al. Influence of the different CD34+ and CD34- cell subsets infused on clinical outcome after non-myeloablative allogeneic peripheral blood transplantation from human leucocyte antigen-identical sibling donors. Br J Haematol 2002; 119: 135–143.

    PubMed  Google Scholar 

  68. Bueno C, Montes R, de la Cueva T, Gutierrez-Aranda I, Menendez P . Intra-bone marrow transplantation of human CD34(+) cells into NOD/LtSz-scid IL-2rgamma(null) mice permits multilineage engraftment without previous irradiation. Cytotherapy 2010; 12: 45–49.

    CAS  PubMed  Google Scholar 

  69. Levac K, Menendez P, Bhatia M . Intra-bone marrow transplantation facilitates pauci-clonal human hematopoietic repopulation of NOD/SCID/beta2m(−/−) mice. Exp Hematol 2005; 33: 1417–1426.

    PubMed  Google Scholar 

  70. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    CAS  PubMed  Google Scholar 

  71. Kumar A, Kersey J . Infant ALL: diverse origins and outcomes. Blood 2010; 115: 2835.

    Google Scholar 

  72. Kersun LS, Wimmer RS, Hoot AC, Meadows AT . Secondary malignant neoplasms of the bladder after cyclophosphamide treatment for childhood acute lymphocytic leukemia. Pediatr Blood Cancer 2004; 42: 289–291.

    PubMed  Google Scholar 

  73. Garcia-Castro J, Balas A, Ramirez M, Perez-Martinez A, Madero L, Gonzalez-Vicent M et al. Mesenchymal stem cells are of recipient origin in pediatric transplantations using umbilical cord blood, peripheral blood, or bone marrow. J Pediatr Hematol Oncol 2007; 29: 388–392.

    PubMed  Google Scholar 

  74. Koc ON, Peters C, Aubourg P, Raghavan S, Dyhouse S, DeGasperi R et al. Bone marrow-derived mesenchymal stem cells remain host-derived despite successful hematopoietic engraftment after allogeneic transplantation in patients with lysosomal and peroxisomal storage diseases. Exp Hematol 1999; 27: 1675–1681.

    CAS  PubMed  Google Scholar 

  75. Rieger K, Marinets O, Fietz T, Korper S, Sommer D, Mucke C et al. Mesenchymal stem cells remain of host origin even a long time after allogeneic peripheral blood stem cell or bone marrow transplantation. Exp Hematol 2005; 33: 605–611.

    CAS  PubMed  Google Scholar 

  76. Stute N, Fehse B, Schroder J, Arps S, Adamietz P, Held KR et al. Human mesenchymal stem cells are not of donor origin in patients with severe aplastic anemia who underwent sex-mismatched allogeneic bone marrow transplant. J Hematother Stem Cell Res 2002; 11: 977–984.

    PubMed  Google Scholar 

  77. Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG et al. Standardized MRD quantification in European ALL trials: proceedings of the Second International Symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 2010; 24: 521–535.

    CAS  PubMed  Google Scholar 

  78. Fang B, Zheng C, Liao L, Han Q, Sun Z, Jiang X et al. Identification of human chronic myelogenous leukemia progenitor cells with hemangioblastic characteristics. Blood 2005; 105: 2733–2740.

    CAS  PubMed  Google Scholar 

  79. Gunsilius E, Duba HC, Petzer AL, Kahler CM, Grunewald K, Stockhammer G et al. Evidence from a leukaemia model for maintenance of vascular endothelium by bone-marrow-derived endothelial cells. Lancet 2000; 355: 1688–1691.

    CAS  PubMed  Google Scholar 

  80. Streubel B, Chott A, Huber D, Exner M, Jager U, Wagner O et al. Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med 2004; 351: 250–259.

    CAS  PubMed  Google Scholar 

  81. Prindull G . Hemangioblasts representing a functional endothelio-hematopoietic entity in ontogeny, postnatal life, and CML neovasculogenesis. Stem Cell Rev 2005; 1: 277–284.

    CAS  PubMed  Google Scholar 

  82. Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P et al. Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 2004; 21: 31–41.

    CAS  PubMed  Google Scholar 

  83. Blau O, Hofmann WK, Baldus CD, Thiel G, Serbent V, Schumann E et al. Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 2007; 35: 221–229.

    CAS  PubMed  Google Scholar 

  84. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia 2007; 21: 1079–1088.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lopez-Villar O, Garcia JL, Sanchez-Guijo FM, Robledo C, Villaron EM, Hernandez-Campo P et al. Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q- syndrome. Leukemia 2009; 23: 664–672.

    CAS  PubMed  Google Scholar 

  86. Walkley CR, Qudsi R, Sankaran VG, Perry JA, Gostissa M, Roth SI et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease. Genes Dev 2008; 22: 1662–1676.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Menendez P, Catalina P, Rodriguez R, Melen GJ, Bueno C, Arriero M et al. Bone marrow mesenchymal stem cells from infants with MLL-AF4+ acute leukemia harbor and express the MLL-AF4 fusion gene. J Exp Med 2009; 206: 3131–3141.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Shalapour S, Eckert C, Seeger K, Pfau M, Prada J, Henze G et al. Leukemia-associated genetic aberrations in mesenchymal stem cells of children with acute lymphoblastic leukemia. J Mol Med 2010; 88: 249–265.

    PubMed  Google Scholar 

  89. Borkhardt A . Where do the leukaemia relapses come from? J Mol Med 2010; 88: 219–222.

    PubMed  Google Scholar 

  90. Daser A, Rabbitts TH . The versatile mixed lineage leukaemia gene MLL and its many associations in leukaemogenesis. Semin Cancer Biol 2005; 15: 175–188.

    CAS  PubMed  Google Scholar 

  91. Chen W, Li Q, Hudson WA, Kumar A, Kirchhof N, Kersey JH . A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood 2006; 108: 669–677.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Metzler M, Forster A, Pannell R, Arends MJ, Daser A, Lobato MN et al. A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene 2006; 25: 3093–3103.

    CAS  PubMed  Google Scholar 

  93. Gaussmann A, Wenger T, Eberle I, Bursen A, Bracharz S, Herr I et al. Combined effects of the two reciprocal t(4;11) fusion proteins MLL AF4 and AF4 MLL confer resistance to apoptosis, cell cycling capacity and growth transformation. Oncogene 2007; 26: 3352–3363.

    CAS  PubMed  Google Scholar 

  94. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    CAS  PubMed  Google Scholar 

  95. Hotfilder M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R et al. Leukemic stem cells in childhood high-risk ALL/t(9;22) and t(4;11) are present in primitive lymphoid-restricted CD34+CD19- cells. Cancer Res 2005; 65: 1442–1449.

    CAS  PubMed  Google Scholar 

  96. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    CAS  PubMed  Google Scholar 

  97. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 97: 752–759.

    Google Scholar 

  98. Kottaridis PD, Gale RE, Langabeer SE, Frew ME, Bowen DT, Linch DC . Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood 2002; 100: 2393–2398.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

PM's group is funded by the CSJA (0029/2006 to PM) and CICE (P08-CTS-3678 to PM) de la Junta de Andalucía, the FIS/FEDER to PM (PI070026 & PI100449) and CB (CP07/00059) and the MICINN to PM (PLE-2009-0111). PM and CB have been partially supported by the International Leukemia Foundation Josep Carreras (ED-Thomas-05). RR is supported by the Spanish Association against Cancer (AECC). We are indebted to Dr Isidro Prat and Dr María del Carmen Hernandez from the Malaga Cord Blood Bank for provision of CB units and Prof Mel Greaves, Dr Gustavo J Melén, Dr Javier García-Castro, Dr Ramón García-Castro and Dr Alberto Orfao for their critical insights and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Menendez.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bueno, C., Montes, R., Catalina, P. et al. Insights into the cellular origin and etiology of the infant pro-B acute lymphoblastic leukemia with MLL-AF4 rearrangement. Leukemia 25, 400–410 (2011). https://doi.org/10.1038/leu.2010.284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.284

Keywords

This article is cited by

Search

Quick links