Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Acute Leukemias

Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale

Abstract

MLL-rearranged acute lymphoblastic leukemia (ALL) in infants (<1 year) is the most aggressive type of childhood leukemia. To develop more suitable treatment strategies, a firm understanding of the biology underlying this disease is of utmost importance. MLL-rearranged ALL displays a unique gene expression profile, partly explained by erroneous histone modifications. We recently showed that t(4;11)-positive infant ALL is also characterized by pronounced promoter CpG hypermethylation. In this study, we investigated whether this widespread hypermethylation also affected microRNA (miRNA) expression. We identified 11 miRNAs that were downregulated in t(4;11)-positive infant ALL as a consequence of CpG hypermethylation. Seven of these miRNAs were re-activated after exposure to the de-methylating agent Zebularine. Interestingly, five of these miRNAs are associated either with MLL or MLL fusions, and for miR-152 we found both MLL and DNA methyltransferase 1 (DNMT1) as potential targeted genes. Finally, a high degree of methylation of the miR-152 CpG island was strongly correlated with a poor clinical outcome. Our data suggests that inhibitors of methylation have a potential beyond re-expression of hypermethylated protein-coding genes in t(4;11)-positive infant ALL. In this study, we provide additional evidence that they should be tested for their efficacy in MLL-rearranged infant ALL in in vivo models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Pieters R, Schrappe M, De Lorenzo P, Hann I, De Rossi G, Felice M et al. A treatment protocol for infants younger than 1 year with acute lymphoblastic leukaemia (Interfant-99): an observational study and a multicentre randomised trial. Lancet 2007; 370: 240–250.

    Article  CAS  PubMed  Google Scholar 

  2. Greaves MF . Infant leukaemia biology, aetiology and treatment. Leukemia 1996; 10: 372–377.

    CAS  PubMed  Google Scholar 

  3. Milne TA, Briggs SD, Brock HW, Martin ME, Gibbs D, Allis CD et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol Cell 2002; 10: 1107–1117.

    Article  CAS  PubMed  Google Scholar 

  4. Krivtsov AV, Feng Z, Lemieux ME, Faber J, Vempati S, Sinha AU et al. H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell 2008; 14: 355–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guenther MG, Lawton LN, Rozovskaia T, Frampton GM, Levine SS, Volkert TL et al. Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia. Genes Dev 2008; 22: 3403–3408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  7. Stam RW, Schneider P, Hagelstein JA, van der Linden MH, Stumpel DJ, de Menezes RX et al. Gene expression profiling-based dissection of MLL translocated and MLL germline acute lymphoblastic leukemia in infants. Blood 2010; 115: 2835–2844.

    Article  CAS  PubMed  Google Scholar 

  8. Stumpel DJ, Schneider P, van Roon EH, Boer JM, de Lorenzo P, Valsecchi MG et al. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 2009; 114: 5490–5498.

    Article  CAS  PubMed  Google Scholar 

  9. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 2006; 9: 435–443.

    Article  CAS  PubMed  Google Scholar 

  10. Friedman RC, Farh KK, Burge CB, Bartel DP . Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19: 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005; 353: 1793–1801.

    Article  CAS  PubMed  Google Scholar 

  12. Schotte D, Chau JC, Sylvester G, Liu G, Chen C, van der Velden VH et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009; 23: 313–322.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao H, Wang D, Du W, Gu D, Yang R . MicroRNA and leukemia: tiny molecule, great function. Crit Rev Oncol Hematol 2010; 74: 149–155.

    Article  PubMed  Google Scholar 

  14. Popovic R, Riesbeck LE, Velu CS, Chaubey A, Zhang J, Achille NJ et al. Regulation of mir-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009; 113: 3314–3322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mi S, Li Z, Chen P, He C, Cao D, Elkahloun A et al. Aberrant overexpression and function of the miR-17-92 cluster in MLL-rearranged acute leukemia. Proc Natl Acad Sci USA 2010; 107: 3710–3715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nakamura T, Canaani E, Croce CM . Oncogenic All1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA 2007; 104: 10980–10985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  18. Kaspers GJ, Veerman AJ, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pocock CF, Malone M, Booth M, Evans M, Morgan G, Greil J et al. BCL-2 expression by leukaemic blasts in a SCID mouse model of biphenotypic leukaemia associated with the t(4;11)(q21;q23) translocation. Br J Haematol 1995; 90: 855–867.

    Article  CAS  PubMed  Google Scholar 

  20. Greil J, Gramatzki M, Burger R, Marschalek R, Peltner M, Trautmann U et al. The acute lymphoblastic leukaemia cell line SEM with t(4;11) chromosomal rearrangement is biphenotypic and responsive to interleukin-7. Br J Haematol 1994; 86: 275–283.

    Article  CAS  PubMed  Google Scholar 

  21. Marquez VE, Barchi Jr JJ, Kelley JA, Rao KV, Agbaria R, Ben-Kasus T et al. Zebularine: a unique molecule for an epigenetically based strategy in cancer chemotherapy. The magic of its chemistry and biology. Nucleosides Nucleotides Nucleic Acids 2005; 24: 305–318.

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005; 33: e179.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zahurak M, Parmigiani G, Yu W, Scharpf RB, Berman D, Schaeffer E et al. Pre-processing Agilent microarray data. BMC Bioinformatics 2007; 8: 142.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smyth GK . Limma: linear models for microarray data. In: R Gentleman, V Carey, S Dudoit, R Irizarry, W Huber (eds). Bioinformatics and Computational Biology Solutions using R and Bioconductor. Springer: New York, 2005, pp 397–420.

    Chapter  Google Scholar 

  25. Benjamini YHY . Controlling the false discovery rate—a practical and powerful approach to multiple testing. J Roy Stat Soc B 1995; 57: 289–300.

    Google Scholar 

  26. Weber B, Stresemann C, Brueckner B, Lyko F . Methylation of human microRNA genes in normal and neoplastic cells. Cell Cycle 2007; 6: 1001–1005.

    Article  CAS  PubMed  Google Scholar 

  27. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005; 33: 2697–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roman-Gomez J, Agirre X, Jimenez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 2009; 27: 1316–1322.

    Article  CAS  PubMed  Google Scholar 

  29. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Braconi C, Huang N, Patel T . MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 2010; 51: 881–890.

    CAS  PubMed  Google Scholar 

  31. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 2008; 10: 593–601.

    Article  CAS  PubMed  Google Scholar 

  32. Han L, Witmer PD, Casey E, Valle D, Sukumar S . DNA methylation regulates MicroRNA expression. Cancer Biol Ther 2007; 6: 1284–1288.

    CAS  PubMed  Google Scholar 

  33. Schafer E, Irizarry R, Negi S, McIntyre E, Small D, Figueroa ME et al. Promoter hypermethylation in MLL-r infant acute lymphoblastic leukemia: biology and therapeutic targeting. Blood 2010; 115: 4798–4809.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Forrest AR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y et al. Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 2010; 24: 460–466.

    Article  CAS  PubMed  Google Scholar 

  35. Dixon-McIver A, East P, Mein CA, Cazier JB, Molloy G, Chaplin T et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3: e2141.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Thiel AT, Blessington P, Zou T, Feather D, Wu X, Yan J et al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele. Cancer Cell 2010; 17: 148–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kowarz E, Burmeister T, Lo Nigro L, Jansen MW, Delabesse E, Klingebiel T et al. Complex MLL rearrangements in t(4;11) leukemia patients with absent AF4.MLL fusion allele. Leukemia 2007; 21: 1232–1238.

    Article  CAS  PubMed  Google Scholar 

  38. Bursen A, Schwabe K, Ruster B, Henschler R, Ruthardt M, Dingermann T et al. The AF4.MLL fusion protein is capable of inducing ALL in mice without requirement of MLL.AF4. Blood 2010; 115: 3570–3579.

    Article  CAS  PubMed  Google Scholar 

  39. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 2008; 214: 17–24.

    Article  CAS  PubMed  Google Scholar 

  40. Chen J, Odenike O, Rowley JD . Leukaemogenesis: more than mutant genes. Nat Rev Cancer 2010; 10: 23–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Duursma AM, Kedde M, Schrier M, le Sage C, Agami R . miR-148 targets human DNMT3b protein coding region. RNA 2008; 14: 872–877.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Griffiths-Jones S . miRBase: microRNA Sequences and Annotation. Curr Protoc Bioinformatics 2010; 29: Chapter 12: Unit 12 19.

Download references

Acknowledgements

We wish to express gratitude to the members and participating hospitals of the INTERFANT-99 study for supporting our research by providing leukemic samples. Members of INTERFANT-99 are: Campbell M (PINDA), Felice M (Argentina), Ferster A (CLCG), Hann I and Vora A (UKCCSG), Hovi L (NOPHO), Janka-Schaub G (COALL), Li CK (Hong Kong), Mann G (BFM-A), LeBlanc T (FRALLE), Pieters R (DCOG), de Rossi G and Biondi A (AIEOP), Rubnitz J (SJCRH), Schrappe M (BFM-G), Silverman L (DFCI), Stary J (CPH), Suppiah R (ANZCHOG), Szczepanski T (PPLLSG), Valsecchi M and de Lorenzo P (CORS).This study was financially supported by grants from the Sophia Foundation for Medical Research (SSWO Grant 495, RWS/RP), the Dutch Cancer Society (EMCR 2005–2662, MLdB/RP), The Netherlands Organization for Scientific Research (NWO-Vidi Grant, MLdB) and the Pediatric Oncology Foundation Rotterdam (MLdB/RP). Furthermore, this research was supported in part by the Intramural Research Program of the NIH, National Cancer Institute and Center for Cancer Research (VEM).

Authorship contributions

DJPMS and DS performed research and wrote the manuscript; EAMLT, PS and LS performed research; RXdM provided statistical guidance; VEM reviewed the paper; RWS, MLdB and RP designed and guided research, reviewed and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R W Stam.

Ethics declarations

Competing interests

The authors declare no conflict of interests.

Additional information

Disclaimer

The institutions financially supporting this study had no role in study design, data collection, data analysis, data interpretation or writing of the report. All authors had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpel, D., Schotte, D., Lange-Turenhout, E. et al. Hypermethylation of specific microRNA genes in MLL-rearranged infant acute lymphoblastic leukemia: major matters at a micro scale. Leukemia 25, 429–439 (2011). https://doi.org/10.1038/leu.2010.282

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.282

Keywords

This article is cited by

Search

Quick links