Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization

Abstract

The concept of hematopoietic stem cell (HSC) niche was formulated in 1978, but HSC niches remained unidentified for the following two decades largely owing to technical limitations. Sophisticated live microscopy techniques and genetic manipulations have identified the endosteal region of the bone marrow (BM) as a preferential site of residence for the most potent HSC – able to reconstitute in serial transplants – with osteoblasts and their progenitors as critical cellular elements of these endosteal niches. This article reviews the path to the discovery of these endosteal niches (often called ‘osteoblastic’ niches) for HSC, what cell types contribute to these niches with their known physical and biochemical features. In the past decade, a first wave of research uncovered many mechanisms responsible for HSC homing to, and mobilization from, the whole BM tissue. However, the recent discovery of endosteal HSC niches has initiated a second wave of research focusing on the mechanisms by which most primitive HSC lodge into and migrate out of their endosteal niches. The second part of this article reviews the current knowledge of the mechanisms of HSC lodgment into, retention in and mobilization from osteoblastic niches.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. McCulloch EA, Till JE . The radiation sensitivity of normal mouse bone marrow cells, determined by quantitative marrow transplantation into irradiated mice. Radiat Res 1960; 13: 115–125.

    CAS  Google Scholar 

  2. Maloney MA, Patt HM . Origin in repopulating cells after localized bone marrow depletion. Science 1968; 165: 71–73.

    CAS  Google Scholar 

  3. Schofield R . The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978; 4: 7–25.

    CAS  Google Scholar 

  4. Goodman JW, Hodgson GS . Evidence for stem cells in the peripheral blood of mice. Blood 1962; 19: 702–714.

    CAS  Google Scholar 

  5. Wright DE, Wagers AJ, Gulati AP, Johnson FL, Weissman IL . Physiological migration of hematopoietic stem and progenitor cells. Science 2001; 294: 1933–1936.

    CAS  Google Scholar 

  6. Bhattacharya D, Czechowicz A, Ooi AG, Rossi DJ, Bryder D, Weissman IL . Niche recycling through division-independent egress of hematopoietic stem cells. J Exp Med 2009; 206: 2837–2850.

    CAS  Google Scholar 

  7. Mendez-Ferrer S, Lucas D, Battista M, Frenette PS . Haematopoietic stem cell release is regulated by circadian oscillations. Nature 2008; 452: 442–447.

    CAS  Google Scholar 

  8. Winkler IG, Lévesque JP . Mechanisms of hematopoietic stem cell mobilization: when innate immunity assails the cells that make blood and bone. Exp Hematol 2006; 34: 996–1009.

    CAS  Google Scholar 

  9. Lévesque JP, Winkler IG, Larsen SR, Rasko JE . Mobilization of bone marrow-derived progenitors. Handb Exp Pharmacol 2007; 180: 3–36.

    Google Scholar 

  10. Papayannopoulou T, Scadden DT . Stem-cell ecology and stem cells in motion. Blood 2008; 111: 3923–3930.

    CAS  Google Scholar 

  11. Schweitzer KM, Drager AM, van der Valk P, Thijsen SF, Zevenbergen A, Theijsmeijer AP et al. Constitutive expression of E-selectin and vascular cell adhesion molecule-1 on endothelial cells of hematopoietic tissues. Am J Pathol 1996; 148: 165–175.

    CAS  Google Scholar 

  12. Sipkins DA, Wei X, Wu JW, Runnels JM, Cote D, Means TK et al. In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 2005; 435: 969–973.

    CAS  Google Scholar 

  13. Katayama Y, Hidalgo A, Chang J, Peired A, Frenette PS . CD44 is a physiological E-selectin ligand on neutrophils. J Exp Med 2005; 201: 1183–1189.

    CAS  Google Scholar 

  14. Winkler IG, Nowlan B, Barbier V, Lévesque J-P . Absence of E-selectin at the vascular niche delays hematopoietic stem cell turn-over. Blood 2007; 110: 188 (abstract).

    Google Scholar 

  15. Papayannopoulou T, Craddock C, Nakamoto B, Priestley GV, Wolf NS . The VLA4/VCAM-1 adhesion pathway defines contrasting mechanisms of lodgement of transplanted murine hemopoietic progenitors between bone marrow and spleen. Proc Natl Acad Sci USA 1995; 92: 9647–9651.

    CAS  Google Scholar 

  16. Lévesque JP, Leavesley DI, Niutta S, Vadas M, Simmons PJ . Cytokines increase human hemopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 1995; 181: 1805–1815.

    Google Scholar 

  17. Katayama Y, Hidalgo A, Peired A, Frenette PS . Integrin α4β7 and its counterreceptor MAdCAM-1 contribute to hematopoietic progenitor recruitment into bone marrow following transplantation. Blood 2004; 104: 2020–2026.

    CAS  Google Scholar 

  18. Grassinger J, Haylock DN, Storan MJ, Haines GO, Williams B, Whitty GA et al. Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with α9β1 and α4β1 integrins. Blood 2009; 114: 49–59.

    CAS  Google Scholar 

  19. Ross EA, Douglas MR, Wong SH, Ross EJ, Curnow SJ, Nash GB et al. Interaction between integrin α9β1 and vascular cell adhesion molecule-1 (VCAM-1) inhibits neutrophil apoptosis 10.1182/blood-2005-07-2692. Blood 2006; 107: 1178–1183.

    CAS  Google Scholar 

  20. Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH . Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 1998; 188: 465–474.

    CAS  Google Scholar 

  21. Katayama Y, Hidalgo A, Furie BC, Vestweber D, Furie B, Frenette PS . PSGL-1 participates in E-selectin-mediated progenitor homing to bone marrow: evidence for cooperation between E-selectin ligands and a4 integrin. Blood 2003; 102: 2060–2067.

    CAS  Google Scholar 

  22. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 1999; 283: 845–848.

    CAS  Google Scholar 

  23. Foudi A, Jarrier P, Zhang Y, Wittner M, Geay JF, Lecluse Y et al. Reduced retention of radioprotective hematopoietic cells within the bone marrow microenvironment in CXCR4−/− chimeric mice. Blood 2006; 107: 2243–2251.

    CAS  Google Scholar 

  24. Lévesque JP, Haylock DN, Simmons PJ . Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hemopoietic progenitors. Blood 1996; 88: 1168–1176.

    Google Scholar 

  25. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA . Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11: 886–891.

    Article  CAS  Google Scholar 

  26. Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y . Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA 2007; 104: 5091–5096.

    CAS  Google Scholar 

  27. Bonig H, Priestley GV, Nilsson LM, Jiang Y, Papayannopoulou T . PTX-sensitive signals in bone marrow homing of fetal and adult hematopoietic progenitor cells. Blood 2004; 104: 2299–2306.

    CAS  Google Scholar 

  28. Adams GB, Alley IR, Chung UI, Chabner KT, Jeanson NT, Lo Celso C et al. Haematopoietic stem cells depend on Gαs-mediated signalling to engraft bone marrow. Nature 2009; 459: 103–107.

    CAS  Google Scholar 

  29. Papayannopoulou T, Priestley GV, Bonig H, Nakamoto B . The role of G-protein signaling in hematopoietic stem/progenitor cell mobilization. Blood 2003; 101: 4739–4747.

    CAS  Google Scholar 

  30. Mendez-Ferrer S, Frenette PS . Gαs uncouples hematopoietic stem cell homing and mobilization. Cell Stem Cell 2009; 4: 379–380.

    CAS  Google Scholar 

  31. Scott LM, Priestley GV, Papayannopoulou T . Deletion of α4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 2003; 23: 9349–9360.

    CAS  Google Scholar 

  32. Ulyanova T, Scott LM, Priestley GV, Jiang Y, Nakamoto B, Koni PA et al. VCAM-1 expression in adult hematopoietic and nonhematopoietic cells is controlled by tissue-inductive signals and reflects their developmental origin. Blood 2005; 106: 86–94.

    CAS  Google Scholar 

  33. Sugiyama T, Kohara H, Noda M, Nagasawa T . Maintenance of the hematopoietic stem cell pool by CXCL12–CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977–988.

    CAS  Google Scholar 

  34. Lévesque JP, Takamatsu Y, Nilsson SK, Haylock DN, Simmons PJ . Vascular cell adhesion molecule-1 (CD106) is cleaved by neutrophil proteases in the bone marrow following hematopoietic progenitor cell mobilization by granulocyte colony-stimulating factor. Blood 2001; 98: 1289–1297.

    Google Scholar 

  35. Lévesque JP, Hendy J, Takamatsu Y, Williams B, Winkler IG, Simmons PJ . Mobilization by either cyclophosphamide or granulocyte colony-stimulating factor transforms the bone marrow into a highly proteolytic environment. Exp Hematol 2002; 30: 440–449.

    Google Scholar 

  36. Pelus LM, Bian H, King AG, Fukuda S . Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GROb/CXCL2 and GRObT /CXCL2D4. Blood 2004; 103: 110–119.

    CAS  Google Scholar 

  37. Vagima Y . MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest 2009; 119: 492–503.

    CAS  Google Scholar 

  38. Winkler IG, Hendy J, Coughlin P, Horvath A, Lévesque JP . Serine protease inhibitors serpina1 and serpina3 are down-regulated in bone marrow during hematopoietic progenitor mobilization. J Exp Med 2005; 201: 1077–1088.

    CAS  Google Scholar 

  39. van Pel M, van Os R, Velders GA, Hagoort H, Heegaard PMH, Lindley IJD et al. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA 2006; 103: 1469–1474.

    CAS  Google Scholar 

  40. Shen Y, Winkler IG, Barbier V, Sims NA, Hendy J, Lévesque JP . Tissue inhibitor of metalloproteinase-3 (TIMP-3) regulates hematopoiesis and bone formation in vivo. PLoS One 2010; in press.

  41. Lévesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ . Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 2003; 111: 187–196.

    Google Scholar 

  42. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002; 3: 687–694.

    CAS  Google Scholar 

  43. Lévesque JP, Hendy J, Winkler IG, Takamatsu Y, Simmons PJ . Granulocyte colony-stimulating factor induces the release in the bone marrow of proteases that cleave c-KIT receptor (CD117) from the surface of hematopoietic progenitor cells. Exp Hematol 2003; 31: 109–117.

    Google Scholar 

  44. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    CAS  Google Scholar 

  45. Lévesque JP, Liu F, Simmons PJ, Betsuyaku T, Senior RM, Pham C et al. Characterization of hematopoietic progenitor mobilization in protease-deficient mice. Blood 2004; 104: 65–72.

    Google Scholar 

  46. van Os R, van Schie ML, Willemze R, Fibbe WE . Proteolytic enzyme levels are increased during granulocyte colony-stimulating factor-induced hematopoietic stem cell mobilization in human donors but do not predict the number of mobilized stem cells. J Hematother Stem Cell Res 2002; 11: 513–521.

    CAS  Google Scholar 

  47. Xu M, Bruno E, Chao J, Huang S, Finazzi G, Fruchtman SM et al. Constitutive mobilization of CD34+ cells into the peripheral blood in idiopathic myelofibrosis may be due to the action of a number of proteases. Blood 2005; 105: 4508–4515.

    CAS  Google Scholar 

  48. Christopherson K, Cooper S, Hangoc G, Broxmeyer H . CD26 is essential for normal G-CSF-induced progenitor cell mobilization as determined by CD26−/− mice. Exp Hematol 2003; 31: 1126–1134.

    CAS  Google Scholar 

  49. Christopherson II KW, Cooper S, Broxmeyer HE . Cell surface peptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitor cells. Blood 2003; 101: 4680–4686.

    CAS  Google Scholar 

  50. Lee HM, Wu W, Wysoczynski M, Liu R, Zuba-Surma EK, Kucia M et al. Impaired mobilization of hematopoietic stem/progenitor cells in C5-deficient mice supports the pivotal involvement of innate immunity in this process and reveals novel promobilization effects of granulocytes. Leukemia 2009; 23: 2052–2062.

    CAS  Google Scholar 

  51. Ratajczak J, Reca R, Kucia M, Majka M, Allendorf DJ, Baran JT et al. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood 2004; 103: 2071–2078.

    CAS  Google Scholar 

  52. Selleri C, Montuori N, Ricci P, Visconte V, Baiano A, Carriero MV et al. In vivo activity of the cleaved form of soluble urokinase receptor: a new hematopoietic stem/progenitor cell mobilizer. Cancer Res 2006; 66: 10885–10890.

    CAS  Google Scholar 

  53. Tjwa M, Janssens S, Carmeliet P . Plasmin therapy enhances mobilization of HPCs after G-CSF. Blood 2008; 112: 4048–4050.

    CAS  Google Scholar 

  54. Lord BI, Testa NG, Hendry JH . The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 1975; 46: 65–72.

    CAS  Google Scholar 

  55. Taichman RS, Reilly MJ, Emerson SG . Human osteoblasts support human hematopoietic progenitor cells in vitro bone marrow cultures. Blood 1996; 87: 518–524.

    CAS  Google Scholar 

  56. Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S . Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 2001; 112: 438–448.

    CAS  Google Scholar 

  57. Nilsson SK, Johnston HM, Coverdale JA . Spatial localization of transplanted hemopoietic stem cells: inferences for the localization of stem cell niches. Blood 2001; 97: 2293–2299.

    CAS  Google Scholar 

  58. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    CAS  Google Scholar 

  59. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    CAS  Google Scholar 

  60. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 2009; 457: 92–97.

    CAS  Google Scholar 

  61. Xie Y, Yin T, Wiegraebe W, He XC, Miller D, Stark D et al. Detection of functional haematopoietic stem cell niche using real-time imaging. Nature 2009; 457: 97–101.

    CAS  Google Scholar 

  62. Kohler A, Schmithorst V, Filippi M-D, Ryan MA, Daria D, Gunzer M et al. Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114: 290–298.

    Google Scholar 

  63. Jiang Y, Bonig H, Ulyanova T, Chang K, Papayannopoulou T . On the adaptation of endosteal stem cell niche function in response to stress. Blood 2009; 114: 3773–3782.

    CAS  Google Scholar 

  64. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 2008; 135: 1118–1129.

    CAS  Google Scholar 

  65. Winkler IG, Barbier V, Wadley R, Zannettino ACW, Williams S, Lévesque J-P . Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood 2010; 116: 375–385.

    CAS  Google Scholar 

  66. Schneider A, Taboas JM, McCauley LK, Krebsbach PH . Skeletal homeostasis in tissue-engineered bone. J Orthop Res 2003; 21: 859–864.

    Google Scholar 

  67. Song J, Kiel MJ, Wang Z, Wang J, Taichman RS, Morrison SJ et al. An in vivo model to study and manipulate the hematopoietic stem cell niche. Blood 2010; 115: 2592–2600.

    CAS  Google Scholar 

  68. Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM et al. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 2004; 18: 2747–2763.

    CAS  Google Scholar 

  69. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    CAS  Google Scholar 

  70. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    CAS  Google Scholar 

  71. Kiel MJ, Morrison SJ . Uncertainty in the niches that maintain haematopoietic stem cells. Nat Rev Immunol 2008; 8: 290–301.

    CAS  Google Scholar 

  72. Kiel MJ, Radice GL, Morrison SJ . Lack of evidence that hematopoietic stem cells depends on N-cadherin-mediated adhesion to osteoblasts for their maintenance. Cell Stem Cell 2007; 1: 204–217.

    CAS  Google Scholar 

  73. Kiel MJ, Acar M, Radice GL, Morrison SJ . Hematopoietic stem cells do not depend on N-cadherin to regulate their maintenance. Cell Stem Cell 2009; 4: 170–179.

    CAS  Google Scholar 

  74. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL . Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 2004; 103: 3258–3264.

    CAS  Google Scholar 

  75. Zhu J, Garrett R, Jung Y, Zhang Y, Kim N, Wang J et al. Osteoblasts support B-lymphocyte commitment and differentiation from hematopoietic stem cells. Blood 2007; 109: 3706–3712.

    CAS  Google Scholar 

  76. Ma YD, Park C, Zhao H, Oduro Jr KA, Tu X, Long F et al. Defects in osteoblast function but no changes in long-term repopulating potential of hematopoietic stem cells in a mouse chronic inflammatory arthritis model. Blood 2009; 114: 4402–4410.

    CAS  Google Scholar 

  77. Askmyr M, Sims NA, Martin TJ, Purton LE . What is the true nature of the osteoblastic hematopoietic stem cell niche? Trends Endocrinol Metab 2009; 20: 303–309.

    CAS  Google Scholar 

  78. Raaijmakers MHGP, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA et al. Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 2010; 464: 852–857.

    CAS  Google Scholar 

  79. Nakamura Y, Arai F, Iwasaki H, Hosokawa K, Kobayashi I, Gomei Y et al. Isolation and characterization of endosteal niche cell populations that regulate hematopoietic stem cells. Blood 2010; 116: 1422–1432.

    CAS  Google Scholar 

  80. Mendez-Ferrer S, Enikolopov GN, Lira S, Frenette PS . Mesenchymal stem cells, regulated by the sympathetic nervous system, form the hematopoietic stem cell niche. Blood 2008; 112: 4 [abstract].

    Google Scholar 

  81. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010; 466: 829–834.

    CAS  Google Scholar 

  82. Ponomaryov T, Peled A, Petit I, Taichman RS, Habler L, Sandbank J et al. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. J Clin Invest 2000; 106: 1331–1339.

    CAS  Google Scholar 

  83. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I et al. G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 2005; 106: 3020–3027.

    CAS  Google Scholar 

  84. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006; 124: 407–421.

    CAS  Google Scholar 

  85. Chitteti BR, Cheng Y-H, Poteat B, Rodriguez-Rodriguez S, Goebel WS, Carlesso N et al. Impact of interactions of cellular components of the bone marrow microenvironment on hematopoietic stem and progenitor cell function. Blood 2010; 115: 3239–3248.

    CAS  Google Scholar 

  86. Duncan AW, Rattis FM, DiMascio LN, Congdon KL, Pazianos G, Zhao C et al. Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 2005; 6: 314–322.

    CAS  Google Scholar 

  87. Mancini SJ, Mantei N, Dumortier A, Suter U, MacDonald HR, Radtke F . Jagged1-dependent Notch signaling is dispensable for hematopoietic stem cell self-renewal and differentiation. Blood 2005; 105: 2340–2342.

    CAS  Google Scholar 

  88. Renström J, Istvanffy R, Gauthier K, Shimono A, Mages J, Jardon-Alvarez A et al. Secreted frizzled-related protein 1 extrinsically regulates cycling activity and maintenance of hematopoietic stem cells. Cell Stem Cell 2009; 5: 157–167.

    Google Scholar 

  89. Fleming HE, Janzen V, Lo Celso C, Guo J, Leahy KM, Kronenberg HM et al. Wnt signaling in the niche enforces hematopoietic stem cell quiescence and is necessary to preserve self-renewal in vivo. Cell Stem Cell 2008; 2: 274–283.

    CAS  Google Scholar 

  90. Silver IA, Murrills RJ, Etherington DJ . Microelectrode studies on the acid microenvironment beneath adherent macrophages and osteoclasts. Exp Cell Res 1988; 175: 266–276.

    CAS  Google Scholar 

  91. Lévesque J-P, Winkler IG, Hendy J, Williams B, Helwani F, Barbier V et al. Hematopoietic progenitor cell mobilization results in hypoxia with increased hypoxia-inducible transcription factor-1a and vascular endothelial growth factor A in bone marrow. Stem Cells 2007; 25: 1954–1965.

    Google Scholar 

  92. Jiang BH, Semenza GL, Bauer C, Marti HH . Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: C1172–C1180.

    CAS  Google Scholar 

  93. Parmar K, Mauch P, Vergilio J-A, Sackstein R, Down JD . Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 5431–5436.

    CAS  Google Scholar 

  94. Branemark P-I . Experimental investigation of microcirculation in bone marrow. Angiology 1961; 12: 293–305.

    Google Scholar 

  95. Chow DC, Wenning LA, Miller WM, Papoutsakis ET . Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys J 2001; 81: 675–684.

    CAS  Google Scholar 

  96. Nilsson SK, Dooner MS, Tiarks CY, Weier HU, Quesenberry PJ . Potential and distribution of transplanted hematopoietic stem cells in a nonablated mouse model. Blood 1997; 89: 4013–4020.

    CAS  Google Scholar 

  97. Nilsson SK, Haylock DN, Johnston HM, Occhiodoro T, Brown TJ, Simmons PJ . Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood 2003; 101: 856–862.

    CAS  Google Scholar 

  98. Adams GB, Chabner KT, Alley IR, Olson DP, Szczepiorkowski ZM, Poznansky MC et al. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 2006; 439: 599–603.

    CAS  Google Scholar 

  99. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT et al. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 2005; 106: 1232–1239.

    CAS  Google Scholar 

  100. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E et al. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 2005; 201: 1781–1791.

    CAS  Google Scholar 

  101. Driessen RL, Johnston HM, Nilsson SK . Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region. Exp Hematol 2003; 31: 1284–1291.

    CAS  Google Scholar 

  102. Li P, Zon LI . Resolving the controversy about N-cadherin and hematopoietic stem cells. Cell Stem Cell 2010; 6: 199–202.

    CAS  Google Scholar 

  103. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Hembree M, Yin T et al. Cadherin-based adhesion is a potential target for niche manipulation to protect hematopoietic stem cells in adult bone marrow. Cell Stem Cell 2010; 6: 194–198.

    CAS  Google Scholar 

  104. Hosokawa K, Arai F, Yoshihara H, Iwasaki H, Nakamura Y, Gomei Y et al. Knockdown of N-cadherin suppresses the long-term engraftment of hematopoietic stem cells. Blood 2010; 116: 554–563.

    CAS  Google Scholar 

  105. Kwon M, MacLeod TJ, Zhang Y, Waisman DM . S100A10, annexin A2, and annexin a2 heterotetramer as candidate plasminogen receptors. Front Biosci 2005; 10: 300–325.

    CAS  Google Scholar 

  106. Jung Y, Wang J, Song J, Shiozawa Y, Wang J, Havens A et al. Annexin II expressed by osteoblasts and endothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood 2007; 110: 82–90.

    CAS  Google Scholar 

  107. Stroncek DF, Clay ME, Petzoldt ML, Smith J, Jaszcz W, Oldham FB et al. Treatment of normal individuals with granulocyte-colony-stimulating factor: donor experiences and the effects on peripheral blood CD34+ cell counts and on the collection of peripheral blood stem cells. Transfusion 1996; 36: 601–610.

    CAS  Google Scholar 

  108. Vial T, Descotes J . Clinical toxicity of cytokines used as haemopoietic growth factors. Drug Saf 1995; 13: 371–406.

    CAS  Google Scholar 

  109. Takamatsu Y, Simmons PJ, Moore RJ, Morris HA, To LB, Lévesque JP . Osteoclast-mediated bone resorption is stimulated during short-term administration of granulocyte colony-stimulating factor but is not responsible for hematopoietic progenitor cell mobilization. Blood 1998; 92: 3465–3473.

    CAS  Google Scholar 

  110. Christopher MJ, Link DC . Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 2008; 23: 1765–1774.

    Google Scholar 

  111. Winkler IG, Sims NA, Pettit AR, Barbier V, Nowlan B, Helwani F et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSC. Blood 2010, in press. doi 10.1182/blood-2009-11-253534.

  112. Lucas D, Battista M, Shi PA, Isola L, Frenette PS . Mobilized hematopoietic stem cell yield depends on species-specific circadian timing. Cell Stem Cell 2008; 3: 364–366.

    CAS  Google Scholar 

  113. Mendez-Ferrer S, Battista M, Frenette PS . Cooperation of β2- and β3-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci 2010; 1192: 139–144.

    CAS  Google Scholar 

  114. Chang MK, Raggatt L-J, Alexander KA, Kuliwaba JS, Fazzalari NL, Schroder K et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008; 181: 1232–1244.

    CAS  Google Scholar 

  115. Rao M, Christopher M, Woloszynek J, Liu F, Link DC . Expression of the G-CSF receptor in monocytes is sufficient to mediate osteoblast suppression and HSPC mobilization by G-CSF in mice. Blood 2009; 114: 563 [abstract].

    Google Scholar 

  116. Cramer T, Yamanishi Y, Clausen BE, Forster I, Pawlinski R, Mackman N et al. HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 2003; 112: 645–657.

    CAS  Google Scholar 

  117. Jalili A, Shirvaikar N, Marquez-Curtis L, Qiu Y, Korol C, Lee H et al. Fifth complement cascade protein (C5) cleavage fragments disrupt the SDF-1/CXCR4 axis: further evidence that innate immunity orchestrates the mobilization of hematopoietic stem/progenitor cells. Exp Hematol 2010; 38: 321–332.

    CAS  Google Scholar 

  118. Ratajczak MZ, Reca R, Wysoczynski M, Yan J, Ratajczak J . Modulation of the SDF-1–CXCR4 axis by the third complement component (C3) – implications for trafficking of CXCR4+ stem cells. Exp Hematol 2006; 34: 986–995.

    CAS  Google Scholar 

  119. Brekke OL, Christiansen D, Fure H, Fung M, Mollnes TE . The role of complement C3 opsonization, C5a receptor, and CD14 in E. coli-induced up-regulation of granulocyte and monocyte CD11b/CD18(CR3), and oxidative burst in human whole blood. J Leukocyte Biol 2007; 81: 1404–1413.

    CAS  Google Scholar 

  120. Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G et al. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood 2002; 100: 1869–1877.

    CAS  Google Scholar 

  121. Christopher MJ, Liu F, Hilton MJ, Long F, Link DC . Suppression of CXCL12 production by bone marrow osteoblasts is a common and critical pathway for cytokine-induced mobilization. Blood 2009; 114: 1331–1339.

    CAS  Google Scholar 

  122. Kollet O, Dar A, Shivtiel S, Kalinkovich A, Lapid K, Sztainberg Y et al. Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nat Med 2006; 12: 657–664.

    CAS  Google Scholar 

  123. Brouard N, Driessen R, Short B, Simmons PJ . G-CSF increases mesenchymal precursor cell numbers in the bone marrow via an indirect mechanism involving osteoclast-mediated bone resorption. Stem Cell Res 2010; 5: 65–75.

    CAS  Google Scholar 

  124. Dzierzak E, Speck NA . Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 2008; 9: 129–136.

    CAS  Google Scholar 

  125. Tavian M, Peault B . Embryonic development of the human hematopoietic system. Int J Dev Biol 2005; 49: 243–250.

    CAS  Google Scholar 

  126. Taichman RS, Reilly MJ, Verma RS, Emerson SG . Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood 1997; 89: 1165–1172.

    CAS  Google Scholar 

  127. Taichman RS, Emerson SG . Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 1994; 179: 1677–1682.

    CAS  Google Scholar 

  128. Bourke VA, Watchman CJ, Reith JD, Jorgensen ML, Dieudonne A, Bolch WE . Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. Blood 2009; 114: 4077–4080.

    CAS  Google Scholar 

  129. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007; 131: 324–336.

    CAS  Google Scholar 

  130. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA et al. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 2007; 129: 1097–1110.

    CAS  Google Scholar 

  131. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH . Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 2007; 129: 1081–1095.

    CAS  Google Scholar 

  132. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM et al. Therapeutic targeting of a stem cell niche. Nat Biotechnol 2007; 25: 238–243.

    CAS  Google Scholar 

  133. Zsebo KM, Williams DA, Geissler EN, Broudy VC, Martin FH, Atkins HL et al. Stem cell factor is encoded at the Sl locus of the mouse and is the ligand for the c-kit tyrosine kinase receptor. Cell 1990; 63: 213–224.

    CAS  Google Scholar 

  134. Broxmeyer HE, Maze R, Miyazawa K, Carow C, Hendrie PC, Cooper S et al. The kit receptor and its ligand, steel factor, as regulators of hemopoiesis. Cancer Cells 1991; 3: 480–487.

    CAS  Google Scholar 

  135. Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y et al. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007; 1: 685–697.

    CAS  Google Scholar 

  136. Goldman DC, Bailey AS, Pfaffle DL, Al Masri A, Christian JL, Fleming WH . BMP4 regulates the hematopoietic stem cell niche. Blood 2009; 114: 4393–4401.

    CAS  Google Scholar 

  137. Presley CA, Lee AW, Kastl B, Igbinosa I, Yamada Y, Fishman GI et al. Bone marrow connexin-43 expression is critical for hematopoietic regeneration after chemotherapy. Cell Comm Adhes 2005; 12: 307–317.

    CAS  Google Scholar 

Download references

Acknowledgements

JPL is a Senior Research Fellow of the Cancer Council Queensland, and FH and IGW are Research Fellows from the National Health and Medical Research Council of Australia. This work was supported by Grant 434515 from the National Health and Medical Research Council to JPL and IGW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-P Lévesque.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lévesque, JP., Helwani, F. & Winkler, I. The endosteal ‘osteoblastic’ niche and its role in hematopoietic stem cell homing and mobilization. Leukemia 24, 1979–1992 (2010). https://doi.org/10.1038/leu.2010.214

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.214

Keywords

This article is cited by

Search

Quick links