Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Spotlight Review
  • Published:

Genomic approaches to small molecule discovery

Abstract

With the sequencing of the human genome and the development of new genomic technologies, biomedical discovery has been transformed. The applications of these new approaches are ever-expanding from disease classification, to identification of new targets, to outcome prediction. A logical next step is the integration of genomic approaches into small molecule discovery. This review will focus on the application of genomics to compound discovery, with an emphasis on the hematological malignancies. It will focus on the use of genomic tools to discover cancer targets and the development and application of both cell-based and in silico gene expression-based approaches to small molecule discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  PubMed  Google Scholar 

  2. Armstrong SA, Staunton JE, Silverman LB, Pieters R, den Boer ML, Minden MD et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet 2002; 30: 41–47.

    Article  CAS  PubMed  Google Scholar 

  3. Yeoh EJ, Ross ME, Shurtleff SA, Williams WK, Patel D, Mahfouz R et al. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002; 1: 133–143.

    Article  CAS  PubMed  Google Scholar 

  4. Ross ME, Zhou X, Song G, Shurtleff SA, Girtman K, Williams WK et al. Classification of pediatric acute lymphoblastic leukemia by gene expression profiling. Blood 2003; 102: 2951–2959.

    Article  CAS  PubMed  Google Scholar 

  5. Schoch C, Kohlmann A, Schnittger S, Brors B, Dugas M, Mergenthaler S et al. Acute myeloid leukemias with reciprocal rearrangements can be distinguished by specific gene expression profiles. Proc Natl Acad Sci USA 2002; 99: 10008–10013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ross ME, Mahfouz R, Onciu M, Liu HC, Zhou X, Song G et al. Gene expression profiling of pediatric acute myelogenous leukemia. Blood 2004; 104: 3679–3687.

    Article  CAS  PubMed  Google Scholar 

  7. Valk PJ, Verhaak RG, Beijen MA, Erpelinck CA, Barjesteh van Waalwijk van Doorn-Khosrovani S, Boer JM et al. Prognostically useful gene-expression profiles in acute myeloid leukemia. N Engl J Med 2004; 350: 1617–1628.

    Article  CAS  PubMed  Google Scholar 

  8. Bullinger L, Dohner K, Bair E, Frohling S, Schlenk RF, Tibshirani R et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004; 350: 1605–1616.

    Article  CAS  PubMed  Google Scholar 

  9. Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002; 8: 68–74.

    Article  CAS  PubMed  Google Scholar 

  10. Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 1937–1947.

    Article  PubMed  Google Scholar 

  11. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  12. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    Article  CAS  PubMed  Google Scholar 

  13. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Winter SS, Jiang Z, Khawaja HM, Griffin T, Devidas M, Asselin BL et al. Identification of genomic classifiers that distinguish induction failure in T-lineage acute lymphoblastic leukemia: a report from the Children's Oncology Group. Blood 2007; 110: 1429–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chiaretti S, Li X, Gentleman R, Vitale A, Vignetti M, Mandelli F et al. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004; 103: 2771–2778.

    Article  CAS  PubMed  Google Scholar 

  16. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13: 1203–1210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Savage KJ, Monti S, Kutok JL, Cattoretti G, Neuberg D, De Leval L et al. The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 2003; 102: 3871–3879.

    Article  CAS  PubMed  Google Scholar 

  18. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ et al. Molecular diagnosis of Burkitt's lymphoma. N Engl J Med 2006; 354: 2431–2442.

    Article  CAS  PubMed  Google Scholar 

  19. Benson JD, Chen YN, Cornell-Kennon SA, Dorsch M, Kim S, Leszczyniecka M et al. Validating cancer drug targets. Nature 2006; 441: 451–456.

    Article  CAS  PubMed  Google Scholar 

  20. Schimke RT, Kaufman RJ, Alt FW, Kellems RF . Gene amplification and drug resistance in cultured murine cells. Science 1978; 202: 1051–1055.

    Article  CAS  PubMed  Google Scholar 

  21. Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R et al. Molecular determinants of resistance to antiandrogen therapy. Nat Med 2004; 10: 33–39.

    Article  PubMed  Google Scholar 

  22. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  23. Armstrong SA, Mabon ME, Silverman LB, Li A, Gribben JG, Fox EA et al. FLT3 mutations in childhood acute lymphoblastic leukemia. Blood 2004; 103: 3544–3546.

    Article  CAS  PubMed  Google Scholar 

  24. Stam RW, den Boer ML, Schneider P, Nollau P, Horstmann M, Beverloo HB et al. Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood 2005; 106: 2484–2490.

    Article  CAS  PubMed  Google Scholar 

  25. Smith BD, Levis M, Beran M, Giles F, Kantarjian H, Berg K et al. Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood 2004; 103: 3669–3676.

    Article  CAS  PubMed  Google Scholar 

  26. DeAngelo DJ, Stone RM, Heaney ML, Nimer SD, Paquette RL, Klisovic RB et al. Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood 2006; 108: 3674–3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stone RM, DeAngelo DJ, Klimek V, Galinsky I, Estey E, Nimer SD et al. Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood 2005; 105: 54–60.

    Article  CAS  PubMed  Google Scholar 

  28. Fiedler W, Serve H, Dohner H, Schwittay M, Ottmann OG, O’Farrell AM et al. A phase 1 study of SU11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 2005; 105: 986–993.

    Article  CAS  PubMed  Google Scholar 

  29. Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. Blood 2003; 102: 2763–2767.

    Article  CAS  PubMed  Google Scholar 

  30. O’Farrell AM, Foran JM, Fiedler W, Serve H, Paquette RL, Cooper MA et al. An innovative phase I clinical study demonstrates inhibition of FLT3 phosphorylation by SU11248 in acute myeloid leukemia patients. Clin Cancer Res 2003; 9: 5465–5476.

    PubMed  Google Scholar 

  31. Scott MR, Westphal KH, Rigby PW . Activation of mouse genes in transformed cells. Cell 1983; 34: 557–567.

    Article  CAS  PubMed  Google Scholar 

  32. Liang P, Pardee AB . Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 1992; 257: 967–971.

    Article  CAS  PubMed  Google Scholar 

  33. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW . Serial analysis of gene expression. Science 1995; 270: 484–487.

    Article  CAS  PubMed  Google Scholar 

  34. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310: 644–648.

    Article  CAS  PubMed  Google Scholar 

  35. Tomlins SA, Rhodes DR, Yu J, Varambally S, Mehra R, Perner S et al. The role of SPINK1 in ETS rearrangement-negative prostate cancers. Cancer Cell 2008; 13: 519–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP . GSEA-P: a desktop application for Gene Set Enrichment Analysis. Bioinformatics 2007; 23: 3251–3253.

    Article  CAS  PubMed  Google Scholar 

  38. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267–273.

    Article  CAS  PubMed  Google Scholar 

  39. Warrell Jr RP, Frankel SR, Miller Jr WH, Scheinberg DA, Itri LM, Hittelman WN et al. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 1991; 324: 1385–1393.

    Article  PubMed  Google Scholar 

  40. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    Article  CAS  PubMed  Google Scholar 

  41. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 2006; 355: 2408–2417.

    Article  CAS  PubMed  Google Scholar 

  42. Stegmaier K, Ross KN, Colavito SA, O’Malley S, Stockwell BR, Golub TR . Gene expression-based high-throughput screening (GE-HTS) and application to leukemia differentiation. Nat Genet 2004; 36: 257–263.

    Article  CAS  PubMed  Google Scholar 

  43. Peck D, Crawford ED, Ross KN, Stegmaier K, Golub TR, Lamb J . A method for high-throughput gene expression signature analysis. Genome Biol 2006; 7: R61.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Stegmaier K, Corsello SM, Ross KN, Wong JS, Deangelo DJ, Golub TR . Gefitinib induces myeloid differentiation of acute myeloid leukemia. Blood 2005; 106: 2841–2848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Boehrer S, Ades L, Braun T, Galluzzi L, Grosjean J, Fabre C et al. Erlotinib exhibits antineoplastic off-target effects in AML and MDS: a preclinical study. Blood 2008; 111: 2170–2180.

    Article  CAS  PubMed  Google Scholar 

  46. Boehrer S, Ades L, Galluzzi L, Tajeddine N, Tailler M, Gardin C et al. Erlotinib and gefitinib for the treatment of myelodysplastic syndrome and acute myeloid leukemia: a preclinical comparison. Biochem Pharmacol 2008; 76: 1417–1425.

    Article  CAS  PubMed  Google Scholar 

  47. Miranda MB, Duan R, Thomas SM, Grandis JR, Redner RL, Jones JE et al. Gefitinib potentiates myeloid cell differentiation by ATRA. Leukemia 2008; 22: 1624–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lindhagen E, Eriksson A, Wickstrom M, Danielsson K, Grundmark B, Henriksson R et al. Significant cytotoxic activity in vitro of the EGFR tyrosine kinase inhibitor gefitinib in acute myeloblastic leukaemia. Eur J Haematol 2008; 81: 344–353.

    CAS  PubMed  Google Scholar 

  49. Chan G, Pilichowska M . Complete remission in a patient with acute myelogenous leukemia treated with erlotinib for non small-cell lung cancer. Blood 2007; 110: 1079–1080.

    Article  CAS  PubMed  Google Scholar 

  50. Pitini V, Arrigo C, Altavilla G . Erlotinib in a patient with acute myelogenous leukemia and concomitant non-small-cell lung cancer. J Clin Oncol 2008; 26: 3645–3646.

    Article  PubMed  Google Scholar 

  51. Hahn CK, Ross KN, Warrington IM, Mazitschek R, Kanegai CM, Wright RD et al. Expression-based screening identifies the combination of histone deacetylase inhibitors and retinoids for neuroblastoma differentiation. Proc Natl Acad Sci USA 2008; 105: 9751–9756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Haining WN, Ebert BL, Subrmanian A, Wherry EJ, Eichbaum Q, Evans JW et al. Identification of an evolutionarily conserved transcriptional signature of CD8 memory differentiation that is shared by T and B cells. J Immunol 2008; 181: 1859–1868.

    Article  CAS  PubMed  Google Scholar 

  53. Haining WN, Angelosanto J, Brosnahan K, Ross K, Hahn C, Russell K et al. High-throughput gene expression profiling of memory differentiation in primary human T cells. BMC Immunol 2008; 9: 44.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tomlins SA, Laxman B, Dhanasekaran SM, Helgeson BE, Cao X, Morris DS et al. Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 2007; 448: 595–599.

    Article  CAS  PubMed  Google Scholar 

  55. Kumar-Sinha C, Tomlins SA, Chinnaiyan AM . Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8: 497–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stegmaier K, Wong JS, Ross KN, Chow KT, Peck D, Wright RD et al. Signature-based small molecule screening identifies cytosine arabinoside as an EWS/FLI modulator in Ewing sarcoma. PLoS Med 2007; 4: e122.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 2006; 9: 405–416.

    Article  CAS  PubMed  Google Scholar 

  58. Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD et al. Functional discovery via a compendium of expression profiles. Cell 2000; 102: 109–126.

    Article  CAS  PubMed  Google Scholar 

  59. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  60. Hollander M, Wolfe D . Nonparametric Statistical Methods, 2nd edn, Wiley: New York, 1999, pp 178–185.

    Google Scholar 

  61. Lamb J . The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54–60.

    Article  CAS  PubMed  Google Scholar 

  62. Seiler KP, George GA, Happ MP, Bodycombe NE, Carrinski HA, Norton S et al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res 2008; 36: D351–D359.

    Article  CAS  PubMed  Google Scholar 

  63. Petri Seiler K, Kuehn H, Pat Happ M, Decaprio D, Clemons PA . Using ChemBank to probe chemical biology. Curr Protoc Bioinformatics 2008, Chapter 14, unit 14.15.11–14.15.26.

  64. Tissing WJ, Meijerink JP, den Boer ML, Pieters R . Molecular determinants of glucocorticoid sensitivity and resistance in acute lymphoblastic leukemia. Leukemia 2003; 17: 17–25.

    Article  CAS  PubMed  Google Scholar 

  65. Kaspers GJ, Pieters R, Van Zantwijk CH, Van Wering ER, Van Der Does-Van Den Berg A, Veerman AJ . Prednisolone resistance in childhood acute lymphoblastic leukemia: vitro–vivo correlations and cross-resistance to other drugs. Blood 1998; 92: 259–266.

    CAS  PubMed  Google Scholar 

  66. Kaspers GJ, Veerman AJ, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997; 90: 2723–2729.

    CAS  PubMed  Google Scholar 

  67. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006; 10: 331–342.

    Article  CAS  PubMed  Google Scholar 

  68. Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 2006; 10: 321–330.

    Article  CAS  PubMed  Google Scholar 

  69. Hassane DC, Guzman ML, Corbett C, Li X, Abboud R, Young F et al. Discovery of agents that eradicate leukemia stem cells using an in silico screen of public gene expression data. Blood 2008; 111: 5654–5662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guzman ML, Rossi RM, Neelakantan S, Li X, Corbett CA, Hassane DC et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood 2007; 110: 4427–4435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Stegmaier laboratory is supported by the US National Institutes of Health, the Howard Hughes Medical Institute Physician Scientist Early Career Award, the Leukemia and Lymphoma Society, the Sidney Kimmel Foundation for Cancer Research, the Smith Family New Investigator Awards Program (Richard Allan Barry Fund at the Boston Foundation), the SynCure Cancer Research Foundation and the William Lawrence Pediatric Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Stegmaier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stegmaier, K. Genomic approaches to small molecule discovery. Leukemia 23, 1226–1235 (2009). https://doi.org/10.1038/leu.2009.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2009.29

Keywords

Search

Quick links