Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

Telomere length is severely and similarly reduced in JAK2V617F-positive and -negative myeloproliferative neoplasms

Abstract

Myeloproliferative neoplasms (MPNs) are clonal stem cell disorders characterized by chronic proliferation of hematopoietic progenitors. We studied the telomere length (TL) of 335 MPN patients and 93 gender- and age-matched controls using a quantitative PCR method (relative TL calculated as the ratio of the amount of telomere DNA vs single-copy DNA: T/S ratio). TL was markedly reduced in MPN patients compared with controls (T/S 0.561 vs 0.990, P<0.001). In JAK2V617F MPN patients, TL correlated inversely with allelic burden (P<0.001). Patients homozygous for the mutation (allelic burden 90–100%) had the shortest TL, even when compared with patients with lower allele burdens consistent with a dominant heterozygous population (allelic burden 55–65%) (T/S 0.367 vs 0.497, P=0.037). This suggests that the high degree of proliferation of the MPN clone reduces TL and suggests the possibility that TL shortening may be indicative of progressive genomic instability during MPN progression. The TL of JAK2V617F-negative MPN patients was similar to JAK2V617F-positive counterparts (T/S 0.527 vs 0.507, P=0.603), suggesting that the yet-to-be-discovered causative mutation(s) impact the mutated stem cell similarly to JAK2V617F, and that TL measurement may prove useful in the diagnostic workup of JAK2V617F-negative MPN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Greider CW . Telomere length regulation. Annu Rev Biochem 1996; 65: 337–365.

    Article  CAS  PubMed  Google Scholar 

  2. Hande MP, Samper E, Lansdorp P, Blasco MA . Telomere length dynamics and chromosomal instability in cells derived from telomerase null mice. J Cell Biol 1999; 144: 589–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Verfaillie CM, Pera MF, Lansdorp PM . Stem cells: hype and reality. Hematol Am Soc Hematol Educ Program 2002, 369–391.

    Article  Google Scholar 

  4. Blasco MA . Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 2005; 6: 611–622.

    Article  CAS  PubMed  Google Scholar 

  5. von Zglinicki T, Martin-Ruiz CM . Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 2005; 5: 197–203.

    Article  CAS  PubMed  Google Scholar 

  6. Drummond MW, Balabanov S, Holyoake TL, Brummendorf TH . Concise review: telomere biology in normal and leukemic hematopoietic stem cells. Stem Cells 2007; 25: 1853–1861.

    Article  CAS  PubMed  Google Scholar 

  7. Stewart SA, Weinberg RA . Telomeres: cancer to human aging. Annu Rev Cell Dev Biol 2006; 22: 531–557.

    Article  CAS  PubMed  Google Scholar 

  8. Greider CW . Telomerase activity, cell proliferation, and cancer. Proc Natl Acad Sci USA 1998; 95: 90–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266: 2011–2015.

    Article  CAS  PubMed  Google Scholar 

  10. Boultwood J, Fidler C, Shepherd P, Watkins F, Snowball J, Haynes S et al. Telomere length shortening is associated with disease evolution in chronic myelogenous leukemia. Am J Hematol 1999; 61: 5–9.

    Article  CAS  PubMed  Google Scholar 

  11. Boultwood J, Peniket A, Watkins F, Shepherd P, McGale P, Richards S et al. Telomere length shortening in chronic myelogenous leukemia is associated with reduced time to accelerated phase. Blood 2000; 96: 358–361.

    CAS  PubMed  Google Scholar 

  12. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ et al. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood 2000; 95: 1883–1890.

    CAS  PubMed  Google Scholar 

  13. Engelhardt M, Mackenzie K, Drullinsky P, Silver RT, Moore MA . Telomerase activity and telomere length in acute and chronic leukemia, pre- and post-ex vivo culture. Cancer Res 2000; 60: 610–617.

    CAS  PubMed  Google Scholar 

  14. Ohyashiki K, Ohyashiki JH, Iwama H, Hayashi S, Shay JW, Toyama K . Telomerase activity and cytogenetic changes in chronic myeloid leukemia with disease progression. Leukemia 1997; 11: 190–194.

    Article  CAS  PubMed  Google Scholar 

  15. Iwama H, Ohyashiki K, Ohyashiki JH, Hayashi S, Kawakubo K, Shay JW et al. The relationship between telomere length and therapy-associated cytogenetic responses in patients with chronic myeloid leukemia. Cancer 1997; 79: 1552–1560.

    Article  CAS  PubMed  Google Scholar 

  16. Brummendorf TH, Ersoz I, Hartmann U, Bartolovic K, Balabanov S, Wahl A et al. Telomere length in peripheral blood granulocytes reflects response to treatment with imatinib in patients with chronic myeloid leukemia. Blood 2003; 101: 375–376.

    Article  CAS  PubMed  Google Scholar 

  17. Ferraris AM, Pujic N, Mangerini R, Rapezzi D, Gallamini A, Racchi O et al. Clonal granulocytes in polycythaemia vera and essential thrombocythaemia have shortened telomeres. Br J Haematol 2005; 130: 391–393.

    Article  CAS  PubMed  Google Scholar 

  18. Ferraris AM, Mangerini R, Pujic N, Racchi O, Rapezzi D, Gallamini A et al. High telomerase activity in granulocytes from clonal polycythemia vera and essential thrombocythemia. Blood 2005; 105: 2138–2140.

    Article  CAS  PubMed  Google Scholar 

  19. Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell 2005; 7: 387–397.

    Article  CAS  PubMed  Google Scholar 

  20. Levine RL, Belisle C, Wadleigh M, Zahrieh D, Lee S, Chagnon P et al. X-inactivation-based clonality analysis and quantitative JAK2V617F assessment reveal a strong association between clonality and JAK2V617F in PV but not ET/MMM, and identifies a subset of JAK2V617F-negative ET and MMM patients with clonal hematopoiesis. Blood 2006; 107: 4139–4141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allen RC, Zoghbi HY, Moseley AB, Rosenblatt HM, Belmont JW . Methylation of HpaII and HhaI sites near the polymorphic CAG repeat in the human androgen-receptor gene correlates with X chromosome inactivation. Am J Hum Genet 1992; 51: 1229–1239.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gale RE, Wheadon H, Linch DC . X-chromosome inactivation patterns using HPRT and PGK polymorphisms in haematologically normal and post-chemotherapy females. Br J Haematol 1991; 79: 193–197.

    Article  CAS  PubMed  Google Scholar 

  23. Vogelstein B, Fearon ER, Hamilton SR, Preisinger AC, Willard HF, Michelson AM et al. Clonal analysis using recombinant DNA probes from the X-chromosome. Cancer Res 1987; 47: 4806–4813.

    CAS  PubMed  Google Scholar 

  24. Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood 1996; 88: 59–65.

    CAS  PubMed  Google Scholar 

  25. Allen RC, Nachtman RG, Rosenblatt HM, Belmont JW . Application of carrier testing to genetic counseling for X-linked agammaglobulinemia. Am J Hum Genet 1994; 54: 25–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Cawthon RM . Telomere measurement by quantitative PCR. Nucleic Acids Res 2002; 30: e47.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J et al. Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 2001; 37: 381–385.

    Article  CAS  PubMed  Google Scholar 

  28. Theocharides A, Boissinot M, Girodon F, Garand R, Teo SS, Lippert E et al. Leukemic blasts in transformed JAK2-V617F-positive myeloproliferative disorders are frequently negative for the JAK2-V617F mutation. Blood 2007; 110: 375–379.

    Article  CAS  PubMed  Google Scholar 

  29. Campbell PJ, Baxter EJ, Beer PA, Scott LM, Bench AJ, Huntly BJ et al. Mutation of JAK2 in the myeloproliferative disorders: timing, clonality studies, cytogenetic associations, and role in leukemic transformation. Blood 2006; 108: 3548–3555.

    Article  CAS  PubMed  Google Scholar 

  30. Lansdorp PM . Telomeres, stem cells, and hematology. Blood 2008; 111: 1759–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Scheding S, Ersoz I, Hartmann U, Bartolvic K, Balabanov S, Salama A et al. Peripheral blood cell telomere length measurements indicate that hematopoietic stem cell turnover is not significantly increased in whole blood and apheresis PLT donors. Transfusion 2003; 43: 1089–1095.

    Article  PubMed  Google Scholar 

  32. Brummendorf TH, Rufer N, Baerlocher GM, Roosnek E, Lansdorp PM . Limited telomere shortening in hematopoietic stem cells after transplantation. Ann N Y Acad Sci 2001; 938: 1–7; discussion 7–8.

    Article  CAS  PubMed  Google Scholar 

  33. Ball SE, Gibson FM, Rizzo S, Tooze JA, Marsh JC, Gordon-Smith EC . Progressive telomere shortening in aplastic anemia. Blood 1998; 91: 3582–3592.

    CAS  PubMed  Google Scholar 

  34. Yamaguchi H, Calado RT, Ly H, Kajigaya S, Baerlocher GM, Chanock SJ et al. Mutations in TERT, the gene for telomerase reverse transcriptase, in aplastic anemia. N Engl J Med 2005; 352: 1413–1424.

    Article  CAS  PubMed  Google Scholar 

  35. Muntoni A, Reddel RR . The first molecular details of ALT in human tumor cells. Hum Mol Genet 2005; 14 (Spec No. 2): R191–R196.

    Article  CAS  PubMed  Google Scholar 

  36. Dunham MA, Neumann AA, Fasching CL, Reddel RR . Telomere maintenance by recombination in human cells. Nat Genet 2000; 26: 447–450.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

LM is an FRSQ scholar. DGG is an Investigator of the Howard Hughes Medical Institute, and a Doris Duke Charitable Foundation Distinguished Clinical Scientist Award recipient. RLL is an American Society of Hematology Basic Research Fellow Award recipient, a Doris Duke Charitable Foundation Clinical Scientist Development Award recipient and is the Geoffrey Beene Junior Chair at Memorial Sloan Kettering Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L Busque.

Additional information

Conflicts of interest

No conflicts of interest are declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, L., Belisle, C., Mollica, L. et al. Telomere length is severely and similarly reduced in JAK2V617F-positive and -negative myeloproliferative neoplasms. Leukemia 23, 287–291 (2009). https://doi.org/10.1038/leu.2008.319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.319

Keywords

This article is cited by

Search

Quick links