Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Myeloproliferative Neoplasias

β-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia

Abstract

Philadelphia chromosome-positive (Ph+) chronic myeloid leukemia (CML) induced by the BCR-ABL oncogene is believed to be developed from leukemic stem cells (LSCs), and we have previously shown in mice that LSCs for CML express the same cell surface markers that are also expressed on normal hematopoietic stem cells (HSCs). Although the inhibition of BCR-ABL kinase activity by imatinib is highly effective in treating human Ph+ CML in chronic phase, it is difficult to achieve molecular remission of the disease, suggesting that LSCs remain in patients. In this study, we find that following imatinib treatment, LSCs not only remained but also accumulated increasingly in bone marrow of CML mice. This insensitivity of LSCs to imatinib was not because of the lack of BCR-ABL kinase inhibition by imatinib, and proliferating leukemic cells derived from LSCs were still sensitive to growth inhibition by imatinib. These results identify an LSC survival pathway that is not inhibited by imatinib. Furthermore, we show that β-catenin in the Wnt signaling pathway is essential for survival and self-renewal of LSCs, providing a new strategy for targeting these cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 2001; 344: 1031–1037.

    CAS  Google Scholar 

  2. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med 2003; 349: 1423–1432.

    Article  CAS  Google Scholar 

  3. O'Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med 2003; 348: 994–1004.

    Article  CAS  Google Scholar 

  4. Lin F, Drummond M, O'Brien S, Cervantes F, Goldman J, Kaeda J . Molecular monitoring in chronic myeloid leukemia patients who achieve complete cytogenetic remission on imatinib. Blood 2003; 102: 1143.

    Article  CAS  Google Scholar 

  5. Drummond MW, Lush CJ, Vickers MA, Reid FM, Kaeda J, Holyoake TL . Imatinib mesylate-induced molecular remission of Philadelphia chromosome-positive myelodysplastic syndrome. Leukemia 2003; 17: 463–465.

    Article  CAS  Google Scholar 

  6. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    Article  CAS  Google Scholar 

  7. Wolff NC, Ilaria Jr RL . Establishment of a murine model for therapy-treated chronic myelogenous leukemia using the tyrosine kinase inhibitor STI571. Blood 2001; 98: 2808–2816.

    Article  CAS  Google Scholar 

  8. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L et al. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 2002; 99: 319–325.

    Article  CAS  Google Scholar 

  9. Marley SB, Deininger MW, Davidson RJ, Goldman JM, Gordon MY . The tyrosine kinase inhibitor STI571, like interferon-alpha, preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors from patients with chronic myeloid leukemia. Exp Hematol 2000; 28: 551–557.

    Article  CAS  Google Scholar 

  10. Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S . Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 2006; 103: 16870–16875.

    Article  CAS  Google Scholar 

  11. Moon RT, Kohn AD, De Ferrari GV, Kaykas A . WNT and beta-catenin signalling: diseases and therapies. Nat Rev Genet 2004; 5: 691–701.

    Article  CAS  Google Scholar 

  12. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R, Kinzler KW et al. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 1997; 275: 1784–1787.

    Article  CAS  Google Scholar 

  13. Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 1997; 275: 1787–1790.

    Article  CAS  Google Scholar 

  14. Rubinfeld B, Robbins P, El-Gamil M, Albert I, Porfiri E, Polakis P . Stabilization of beta-catenin by genetic defects in melanoma cell lines. Science 1997; 275: 1790–1792.

    Article  CAS  Google Scholar 

  15. Rask K, Nilsson A, Brannstrom M, Carlsson P, Hellberg P, Janson PO et al. Wnt-signalling pathway in ovarian epithelial tumours: increased expression of beta-catenin and GSK3beta. Br J Cancer 2003; 89: 1298–1304.

    Article  CAS  Google Scholar 

  16. Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM . Activation of the Wnt pathway in non-small cell lung cancer: evidence of dishevelled overexpression. Oncogene 2003; 22: 7218–7221.

    Article  CAS  Google Scholar 

  17. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    Article  CAS  Google Scholar 

  18. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    Article  CAS  Google Scholar 

  19. Uchida N, Sutton RE, Friera AM, He D, Reitsma MJ, Chang WC et al. HIV, but not murine leukemia virus, vectors mediate high efficiency gene transfer into freshly isolated G0/G1 human hematopoietic stem cells. Proc Natl Acad Sci USA 1998; 95: 11939–11944.

    Article  CAS  Google Scholar 

  20. Akashi K, Traver D, Miyamoto T, Weissman IL . A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.

    Article  CAS  Google Scholar 

  21. Manz MG, Miyamoto T, Akashi K, Weissman IL . Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 2002; 99: 11872–11877.

    Article  CAS  Google Scholar 

  22. Kondo M, Wagers AJ, Manz MG, Prohaska SS, Scherer DC, Beilhack GF et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev Immunol 2003; 21: 759–806.

    Article  CAS  Google Scholar 

  23. Domen J, Weissman IL . Hematopoietic stem cells need two signals to prevent apoptosis; BCL-2 can provide one of these, Kitl/c-Kit signaling the other. J Exp Med 2000; 192: 1707–1718.

    Article  CAS  Google Scholar 

  24. Orkin SH, Zon LI . Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat Immunol 2002; 3: 323–328.

    Article  CAS  Google Scholar 

  25. Lessard J, Sauvageau G . Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423: 255–260.

    Article  CAS  Google Scholar 

  26. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 2007; 26: 1456–1466.

    Article  CAS  Google Scholar 

  27. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  Google Scholar 

  28. Li S, Ilaria Jr RL, Million RP, Daley GQ, Van Etten RA . The P190, P210, and p230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. J Exp Med 1999; 189: 1399–1412.

    Article  CAS  Google Scholar 

  29. Roumiantsev S, de Aos IE, Varticovski L, Ilaria RL, Van Etten RA . The src homology 2 domain of Bcr/Abl is required for efficient induction of chronic myeloid leukemia-like disease in mice but not for lymphoid leukemogenesis or activation of phosphatidylinositol 3-kinase. Blood 2001; 97: 4–13.

    Article  CAS  Google Scholar 

  30. Brault V, Moore R, Kutsch S, Ishibashi M, Rowitch DH, McMahon AP et al. Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development 2001; 128: 1253–1264.

    CAS  Google Scholar 

  31. Li S, Couvillon AD, Brasher BB, Van Etten RA . Tyrosine phosphorylation of Grb2 by Bcr/Abl and epidermal growth factor receptor: a novel regulatory mechanism for tyrosine kinase signaling. EMBO J 2001; 20: 6793–6804.

    Article  CAS  Google Scholar 

  32. Shah NP, Tran C, Lee FY, Chen P, Norris D, Sawyers CL . Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004; 305: 399–401.

    Article  CAS  Google Scholar 

  33. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutants confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crise chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    Article  CAS  Google Scholar 

  34. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Stephen B Sampson for critical reading of the manuscript, and Patricia Cherry for the secretarial assistance. This work is supported by the grants from the Leukemia and Lymphoma Society and the National Institutes of Health (R01-CA114199, R01-CA122142) to SL. SL is a Scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Li.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Chen, Y., Douglas, L. et al. β-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23, 109–116 (2009). https://doi.org/10.1038/leu.2008.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.262

Keywords

This article is cited by

Search

Quick links