Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Targeting the leukemic stem cell: the Holy Grail of leukemia therapy

Abstract

Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological properties have been elucidated, including their distinct replicative properties, cell surface phenotypes, their increased resistance to chemotherapeutic drugs and the involvement of growth-promoting chromosomal translocations. Of particular importance is their ability to transfer malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice. Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with small-molecule inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding cassette transporter proteins are being extensively studied, as they are important in drug resistance—a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field, it is a highly promising battleground that may reveal the Holy Grail of cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Till JE, McCulloch EA . A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 213–222.

    CAS  PubMed  Google Scholar 

  2. Rizo A, Vellenga E, de Haan G, Schuringa JJ . Signaling pathways in self-renewing hematopoietic and leukemic stem cells: do all stem cells need a niche? Hum Mol Genet 2006; 15: R210–R219.

    CAS  PubMed  Google Scholar 

  3. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367: 645–648.

    Article  CAS  PubMed  Google Scholar 

  4. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    CAS  PubMed  Google Scholar 

  5. Krause DS, Van Etten RA . Right on target: eradicating leukemic stem cells. Trends Mol Med 2007; 13: 470–481.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1: 661–673.

    CAS  PubMed  Google Scholar 

  7. Hope KJ, Jin L, Dick JE . Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol 2004; 5: 738–743.

    CAS  PubMed  Google Scholar 

  8. Satoh C, Ogata K . Hypothesis: myeloid-restricted hematopoietic stem cells with self-renewal capacity may be the transformation site in acute myeloid leukemia. Leuk Res 2006; 30: 491–495.

    CAS  PubMed  Google Scholar 

  9. Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML, Weissman IL . Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 3029–3035.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML . MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 2003; 3: 161–171.

    CAS  PubMed  Google Scholar 

  11. Ravandi F, Estrov Z . Eradication of leukemia stem cells as a new goal of therapy in leukemia. Clin Cancer Res 2006; 12: 340–344.

    CAS  PubMed  Google Scholar 

  12. Jaiswal S, Traver D, Miyamoto T, Akashi K, Lagasse E, Weissman IL . Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 2003; 100: 10002–10007.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    Article  CAS  PubMed  Google Scholar 

  14. Jiang X, Zhao Y, Smith C, Gasparetto M, Turhan A, Eaves A et al. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia 2007; 21: 926–935.

    CAS  PubMed  Google Scholar 

  15. Jiang X, Saw KM, Eaves A, Eaves C . Instability of BCR-ABL gene in primary and cultured chronic myeloid leukemia stem cells. J Natl Cancer Inst 2007; 99: 680–693.

    CAS  PubMed  Google Scholar 

  16. Roeder I, Horn M, Glauche I, Hochhaus A, Mueller MC, Loeffler M . Dynamic modeling of imatinib-treated chronic myeloid leukemia: functional insights and clinical implications. Nat Med 2006; 12: 1181–1184.

    CAS  PubMed  Google Scholar 

  17. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, Flores T, Garcia-Sanz R, Gonzalez M et al. A primitive hematopoietic cell is the target for the leukemic transformation in human Philadelphia-positive acute lymphoblastic leukemia. Blood 2000; 95: 1007–1013.

    CAS  PubMed  Google Scholar 

  18. Michor F, Hughes TP, Iwasa Y, Branford S, Shah NP, Sawyers CL et al. Dynamics of chronic myeloid leukemia. Nature 2005; 435: 1267–1270.

    CAS  PubMed  Google Scholar 

  19. Michor F . Mathematical models of cancer stem cells. J Clin Oncol 2008; 26: 2854–2861.

    PubMed  Google Scholar 

  20. Michor F . Quantitative approaches to analyzing imatinib-treated chronic myeloid leukemia. Trends Pharmacol Sci 2007; 28: 197–199.

    CAS  PubMed  Google Scholar 

  21. Dingli D, Traulsen A, Michor F . (A)symmetric stem cell replication and cancer. PLOS Comput Biol 2007; 3: 482–487.

    CAS  Google Scholar 

  22. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 2001; 293: 876–880.

    CAS  PubMed  Google Scholar 

  23. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell 2002; 2: 117–125.

    CAS  PubMed  Google Scholar 

  24. Shiozawa Y, Havens AM, Pienta KJ, Taichman RS . The bone marrow niche: habitat to hematopoietic and mesenchymal stem cells and unwitting host to molecular parasites. Leukemia 2008; 22: 941–950.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA . Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005; 11: 886–891.

    CAS  PubMed  Google Scholar 

  26. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    CAS  PubMed  Google Scholar 

  27. McCulloch EA, Siminovitch L, Till JE, Russell ES, Bernstein SE . The cellular basis of the genetically determined hematopoietic defect in anemic mice of genotype Sl-Sld. Blood 1965; 26: 399–410.

    CAS  PubMed  Google Scholar 

  28. Barker JE . Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 1997; 25: 542–547.

    CAS  PubMed  Google Scholar 

  29. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 2002; 109: 625–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Fortunel NO, Hatzfeld JA, Monier MN, Hatzfeld A . Control of hematopoietic stem/progenitor cell fate by transforming growth factor-beta. Oncol Res 2003; 13: 445–453.

    PubMed  Google Scholar 

  31. L’Hote CG, Knowles MA . Cell responses to FGFR3 signalling: growth, differentiation and apoptosis. Exp Cell Res 2005; 304: 417–431.

    PubMed  Google Scholar 

  32. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149–161.

    CAS  PubMed  Google Scholar 

  33. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  34. Wu S, Cetinkaya C, Munoz-Alonso MJ, der Lehr N, Bahram F, Beuger V et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003; 22: 351–360.

    CAS  PubMed  Google Scholar 

  35. Murphy MJ, Wilson A, Trumpp A . More than just proliferation: Myc function in stem cells. Trends Cell Biol 2005; 15: 128–137.

    CAS  PubMed  Google Scholar 

  36. Lapidot T, Kollet O . The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/SCID and NOD/SCID/B2 m(null) mice. Leukemia 2002; 16: 1992–2003.

    CAS  PubMed  Google Scholar 

  37. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 2003; 423: 409–414.

    CAS  PubMed  Google Scholar 

  38. Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 2003; 423: 448–452.

    CAS  PubMed  Google Scholar 

  39. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  40. Teixido J, Hemler ME, Greenberger JS, Anklesaria P . Role of beta 1 and beta 2 integrins in the adhesion of human CD34hi stem cells to bone marrow stroma. J Clin Invest 1992; 90: 358–367.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R . Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta1 integrins. Nature 1996; 380: 171–175.

    CAS  PubMed  Google Scholar 

  42. Lin LI, Lin DT, Chang CJ, Lee CY, Tang JL, Tien HF . Marrow matrix metalloproteinases (MMPs) and tissue inhibitors of MMP in acute leukaemia: potential role of MMP-9 as a surrogate marker to monitor leukaemic status in patients with acute myelogenous leukaemia. Br J Haematol 2002; 117: 835–841.

    CAS  PubMed  Google Scholar 

  43. Williams DA, Cancelas JA . Leukaemia: niche retreats for stem cells. Nature 2006; 444: 827–828.

    CAS  PubMed  Google Scholar 

  44. Krause DS, Lazarides K, von Adrian UH, Van Etten RA . Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 2006; 12: 1175–1180.

    CAS  PubMed  Google Scholar 

  45. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE . Targeting of CD44 eradicates human acute myeloid leukemic stem cell. Nat Med 2006; 12: 1167–1174.

    PubMed  Google Scholar 

  46. Mikesch JH, Steffen B, Berdel WE, Serve H, Muller-Tidow C . The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia. Leukemia 2007; 21: 1638–1647.

    CAS  PubMed  Google Scholar 

  47. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL et al. Granulocyte–macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351: 657–667.

    CAS  PubMed  Google Scholar 

  48. Kawano Y, Kypta R . Secreted antagonists of the Wnt signaling pathway. J Cell Sci 2003; 116: 2627–2634.

    CAS  PubMed  Google Scholar 

  49. Chim CS, Chan WWL, Pang A, Kwong YL . Preferential methylation of Wnt inhibitor factor-1 in acute promyelocytic leukemia: an independent poor prognostic factor. Leukemia 2006; 20: 907–909.

    CAS  PubMed  Google Scholar 

  50. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM et al. Loss of β-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12: 528–541.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Austin TW, Solar GP, Ziegler FC, Liem L, Matthews WA . A role for the Wnt gene family in hematopoiesis: expansion of multi-lineage progenitor cells. Blood 1997; 89: 3624–3635.

    CAS  PubMed  Google Scholar 

  52. van den Berg DJ, Sharma AK, Bruno E, Hoffman R . Role of members of the Wnt gene family in human haematopoiesis. Blood 1998; 89: 3189–3202.

    Google Scholar 

  53. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH et al. Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 2007; 26: 1456–1466.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhardwaj G, Murdoch B, Wu D, Baker DP, Williams KP, Chadwick K et al. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2001; 2: 172–180.

    CAS  PubMed  Google Scholar 

  55. Varnum-Finney B, Xu L, Brashem-Stein C, Nourigat C, Flowers D, Bakkour S et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278–1281.

    CAS  PubMed  Google Scholar 

  56. Hing HK, Sun X, Artavanis-Tsakonas S . Modulation of wingless signaling by Notch in Drosophilia. Mech Dev 1994; 47: 261–268.

    CAS  PubMed  Google Scholar 

  57. Brandts CH, Sargin B, Rode M, Biermann C, Lindtner B, Schwable J et al. Constitutive activation of Akt by Flt3 internal tandem duplications is necessary for increased survival, proliferation, and myeloid transformation. Cancer Res 2005; 65: 9643–9650.

    CAS  PubMed  Google Scholar 

  58. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  59. Tickenbrock L, Schwable J, Wiedehage M, Steffen B, Sargin B, Choudhary C et al. Flt3 tandem duplication mutations cooperate with Wnt signaling in leukemic signal transduction. Blood 2005; 105: 3699–3706.

    CAS  PubMed  Google Scholar 

  60. Thomas EK, Cancelas JA, Zheng Y, Williams DA . Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 2008; 22: 898–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang Y, Cai D, Brendel C, Barett C, Erben P, Manley PW et al. Adaptive secretion of granulocyte–macrophage colony-stimulating factor (GM-CSF) mediates imatinib and nilotinib resistance in BCR-ABL+ progenitors via JAK-2/STAT-5 pathway activation. Blood 2007; 109: 2147–2155.

    CAS  PubMed  Google Scholar 

  62. Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y et al. Rac and Cdc 42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001; 98: 5614–5618.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al. Rac guanosine triphosphates represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 2007; 12: 467–478.

    CAS  PubMed  Google Scholar 

  64. Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S . Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad USA 2006; 103: 16870–16875.

    CAS  Google Scholar 

  65. Li S, Li D . Stem cell and kinase activity-independent pathway in resistance of leukaemia to BCR-ABL inhibitors. J Cell Mol Med 2007; 11: 1251–1262.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 2004; 36: 453–461.

    CAS  PubMed  Google Scholar 

  67. Danhauser-Riedl S, Warmuth M, Druker BJ, Emmerich B, Hellek M . Activation of Src kinases p53/p56lyn and p59hck by p210bcr/abl in myeloid cells. Cancer Res 1996; 56: 3589–3596.

    CAS  PubMed  Google Scholar 

  68. Warmuth M, Bergmann M, Priess A, Hauslmann K, Emmerich B, Hallek M . The Src family kinase Hck interacts with Bcr-Abl by a kinase-independent mechanism and phosphorylates the Grb-2-binding site of Bcr. J Biol Chem 1997; 272: 33260–33270.

    CAS  PubMed  Google Scholar 

  69. Feinstein E, Cimino G, Gale RP, Alimena G, Berthier R, Kishi K et al. p53 in chronic myelogenous leukemia in acute phase. Proc Natl Acad USA 1991; 88: 6293–6297.

    CAS  Google Scholar 

  70. Sill H, Goldman JM, Cross NC . Homozygous deletions of the p16 tumor-suppressor genes are associated with lymphoid transformation of chronic myeloid leukemia. Blood 1995; 85: 2013–2016.

    CAS  PubMed  Google Scholar 

  71. Towatari M, Adachi K, Kato H, Sato H . Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. Blood 1991; 78: 2178–2181.

    CAS  PubMed  Google Scholar 

  72. Williams RT, Roussel MF, Sherr CJ . Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103: 6688–6693.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ . MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 2007; 109: 500–502.

    CAS  PubMed  Google Scholar 

  74. Cheetham GM, Charlton PA, Golec JM, Pollard JR . Structural basis for potential inhibition of the Aurora kinases and a T315I multi-drug resistant mutant form of Abl by VX-680. Cancer Lett 2007; 251: 323–329.

    CAS  PubMed  Google Scholar 

  75. Schroeder JA, Adriance MC, Thompson MC, Camenisch TD, Gendler SJ . MUC1 alters beta-catenin-dependent tumor formation and promotes cellular invasion. Oncogene 2003; 22: 1324–1332.

    CAS  PubMed  Google Scholar 

  76. Haraguchi K, Nishida A, Ishidate T, Akiyama T . Activation of β-catenin-TCF-mediated transcription by non-receptor tyrosine kinase v-Src. Biochem Biophys Res Commun 2004; 313: 841–844.

    CAS  PubMed  Google Scholar 

  77. van Gosliga D, Schepers H, Rizo A, van der Kolk D, Vellenga E, Schuringa JJ . Establishing long-term cultures with self-renewing acute myeloid leukemia stem/progenitor cells. Exp Hematol 2007; 35: 1538–1549.

    CAS  PubMed  Google Scholar 

  78. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL et al. The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 2000; 14: 1777–1784.

    CAS  PubMed  Google Scholar 

  79. Tsimberidou AM, Giles FJ, Estey E, O’Brien S, Keating MJ, Kantarjian HM . The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006; 132: 398–409.

    CAS  PubMed  Google Scholar 

  80. Sperr WR, Florian S, Hauswirth AW, Valent P . CD 33 as a target of therapy in acute myeloid leukemia: current status and future perspectives. Leuk Lymphoma 2005; 46: 1115–1120.

    CAS  PubMed  Google Scholar 

  81. Hogge DE, Feuring-Buske M, Gerhard B, Frankel AE . The efficacy of diphtheria-growth factor fusion proteins is enhanced by co-administration of cytosine arabinoside in an immunodeficient mouse model of human acute myeloid leukemia. Leuk Res 2004; 28: 1221–1226.

    CAS  PubMed  Google Scholar 

  82. Bakker AB, van den Oudenrijn S, Bakker AQ, Feller N, van Meijer M, Bia JA et al. C-type lectin-like molecule-1: a novel myeloid cell surface marker associated with acute myeloid leukemia. Cancer Res 2004; 64: 8443–8450.

    CAS  PubMed  Google Scholar 

  83. Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A et al. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 2006; 20: 2147–2154.

    CAS  PubMed  Google Scholar 

  84. de Jonge-Peeters SD, Kuipers F, de Vries EG, Vellenga E . ABC transporter expression in hematopoietic stem cells and the role in AML drug resistance. Crit Rev Oncol Hematol 2007; 62: 214–226.

    PubMed  Google Scholar 

  85. de Grouw EP, Raaijmakers MH, Boezeman JB, van der Reijden BA, van de Locht LT, de Witte TJ et al. Preferential expression of a high number of ATP binding cassette transporters in both normal and leukemic CD34+CD38 cells. Leukemia 2006; 20: 750–754.

    CAS  PubMed  Google Scholar 

  86. Ross DD . Novel mechanisms of drug resistance in leukemia. Leukemia 2000; 14: 467–473.

    CAS  PubMed  Google Scholar 

  87. Ross DD . Modulation of drug resistance transporters as a strategy for treating myelodysplastic syndrome. Best Pract Res Clin Haematol 2004; 17: 641–651.

    CAS  PubMed  Google Scholar 

  88. Fisher GA, Sikic BI . Clinical studies with modulators of multidrug resistance. Hematol Oncol Clin North Am 1995; 9: 363–382.

    CAS  PubMed  Google Scholar 

  89. Greenberg PL, Lee SJ, Advani R, Tallman MS, Sikic BI, Letendre L et al. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). J Clin Oncol 2004; 22: 1078–1086.

    CAS  PubMed  Google Scholar 

  90. Banker DE, Mayer SJ, Li HY, Willman CL, Appelbaum FR, Zager RA . Cholesterol synthesis and import contribute to protective cholesterol increments in acute myeloid leukemia cells. Blood 2004; 104: 1816–1824.

    CAS  PubMed  Google Scholar 

  91. Li HY, Appelbaum FR, Willman CL, Zager RA, Banker DE . Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 2003; 101: 3628–3634.

    CAS  PubMed  Google Scholar 

  92. Stirewalt DL, Appelbaum FR, Willman CL, Zager RA, Banker DE . Mevastatin can increase toxicity in primary AMLs exposed to standard therapeutic agents, but statin efficacy is not simply associated with ras hotspot mutations or overexpression. Leuk Res 2003; 27: 133–145.

    CAS  PubMed  Google Scholar 

  93. Keung Y-K, Buss D, Powell BL, Pettenati M . Central diabetes insipidus and inv(3)(q21q26) and monosomy 7 in acute myeloid leukemia. Cancer Genet Cytogent 2002; 136: 78–81.

    CAS  Google Scholar 

  94. Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH et al. Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 1999; 93: 1308–1318.

    CAS  PubMed  Google Scholar 

  95. Wong WW, Tan MM, Xia Z, Dimitroulakos J, Minden MD, Penn LZ . Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res 2001; 7: 2067–2075.

    CAS  PubMed  Google Scholar 

  96. Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ . Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 2004; 64: 6461–6468.

    CAS  PubMed  Google Scholar 

  97. Thibault A, Samid D, Tompkins AC, Figg WD, Cooper MR, Hohl RJ et al. Phase I study of lovastatin, an inhibitor of the mevalonate pathway, in patients with cancer. Clin Cancer Res 1996; 2: 483–491.

    CAS  PubMed  Google Scholar 

  98. Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL et al. Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia 2007; 21: 1423–1430.

    CAS  PubMed  Google Scholar 

  99. Raaphorst FM . Self-renewal of hematopoietic and leukemic stem cells: a central role for the Polycomb-group gene Bmi-1. Trends Immunol 2003; 24: 522–524.

    CAS  PubMed  Google Scholar 

  100. Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423: 302–305.

    CAS  PubMed  Google Scholar 

  101. Levis M, Small D . FLT3: It does matter in leukemia. Leukemia 2003; 17: 1738–1752.

    CAS  PubMed  Google Scholar 

  102. Mumm JS, Schroeter EH, Saxena MT, Griesemer A, Tian X, Pan DJ et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch 1. Mol Cell 2000; 5: 197–206.

    CAS  PubMed  Google Scholar 

  103. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M et al. The Wilms’ tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007; 21: 1783–1791.

    CAS  PubMed  Google Scholar 

  104. Wong P, Iwasaki M, Somervaille TC, So CW, Cleary ML . Meis1 is an essential and rate-limiting regulator of MLL leukemia stem cell potential. Genes Dev 2007; 21: 2762–2774.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Steidl U, Rosenbauer F, Verhaak RG, Gu X, Ebralidze A, Otu HH et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat Genet 2006; 38: 1269–1277.

    CAS  PubMed  Google Scholar 

  106. Somervaille TC, Cleary ML . PU.1 and Junb: suppressing the formation of acute myeloid leukemia stem cells. Cancer Cell 2006; 10: 456–457.

    CAS  PubMed  Google Scholar 

  107. Martelli AM, Nyakern M, Tabellini G, Bortul R, Tazzari PL, Evangelisti C et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia 2006; 20: 911–928.

    CAS  PubMed  Google Scholar 

  108. Xu Q, Thompson JE, Carroll M . mTOR regulates cell survival after etoposide treatment in primary AML cells. Blood 2005; 106: 4261–4268.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Tamburini J, Elie C, Bardet V, Chapuis N, Park S, Broet P et al. Constitutive phosphoinositide-3kinase/AKT activation represents a favourable prognostic factor in de novo AML patients. Blood 2007; 110: 1025–1028.

    CAS  PubMed  Google Scholar 

  110. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007; 14: 2009–2023.

    CAS  PubMed  Google Scholar 

  111. McCubrey JA, Steelman LS, Abrams SL, Bertrand FE, Ludwig DE, Basecke J et al. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia 2008; 22: 708–722.

    CAS  PubMed  Google Scholar 

  112. Martelli AM, Tazzari PL, Evangelisti C, Chiarini F, Blalock WL, Billi AM et al. Targeting the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin module for acute myelogenous leukemia therapy: from bench to bedside. Curr Med Chem 2007; 14: 2009–2023.

    CAS  PubMed  Google Scholar 

  113. Tazzari PL, Cappellini A, Ricci F, Evangelisti C, Papa V, Grafone T et al. Multidrug resistance-associated protein 1 expression is under the control of the phosphoinositide 3 kinase/Akt signal transduction network in human acute myelogenous leukemia blasts. Leukemia 2007; 21: 427–438.

    CAS  PubMed  Google Scholar 

  114. Steelman LS, Abrams SL, Whelan J, Bertrand FE, Ludwig DE, Basecke J et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia 2008; 22: 686–707.

    CAS  PubMed  Google Scholar 

  115. Kojima K, Knopleva M, Samudio IJ, Shikami M, Cabbreira-Hansen M, McQueen T et al. MDM2 antagonists induce p53-dependent apoptosis in AML: implications for leukemia therapy. Blood 2005; 106: 3150–3159.

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Kojima K, Konopleva M, McQueen T, O’Brien S, Plunkett W, Andreeff M . Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanism and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 2006; 108: 993–1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Kojima K, Konopleva M, Samudio IJ, Schober WD, Bornmann WG, Andreeff M . Concomitant inhibition of MDM2 and Bcl-2 protein function synergistically induce mitochondrial apoptosis in AML. Cell Cycle 2006; 5: 2778–2786.

    CAS  PubMed  Google Scholar 

  118. Kojima K, Konopleva M, Samudio IJ, Ruvolo V, Andreeff M . Mitogen-activated protein kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res 2007; 67: 3210–3219.

    CAS  PubMed  Google Scholar 

  119. Janz M, Stuhmer T, Vassilev LT, Bargou RC . Pharmacologic activation of p53-dependent and p53-independent apoptotic pathways in Hodgkin/Reed-Sternberg cells. Leukemia 2007; 21: 772–779.

    CAS  PubMed  Google Scholar 

  120. Lehman BD, McCubrey JA, Jefferson HS, Paine MS, Chappell WH, Terrian DM . A dominant role for p53-dependent cellular senescence in radiosensitization of human prostate cancer cells. Cell Cycle 2007; 6: 595–605.

    Google Scholar 

  121. Pederson-Bjergaard J, Christiansen DH, Desta F, Andersen MK . Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 2006; 20: 1943–1949.

    Google Scholar 

  122. Pluta A, Nyman U, Joseph B, Robak T, Zhivotovsky B, Smolewski P . The role of p73 in hematological malignancies. Leukemia 2006; 20: 757–766.

    CAS  PubMed  Google Scholar 

  123. Doepfner KT, Spertini O, Arcaro A . Autocrine insulin-like growth factor-1 signaling promotes growth and survival of human acute myeloid leukemia cells via the phosphoinositide 3-kinase/Akt pathway. Leukemia 2007; 21: 1921–1930.

    CAS  PubMed  Google Scholar 

  124. Longo PG, Laurenti L, Gobessi S, Petlickovski A, Pelosi M, Chiusolo P et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 2007; 21: 110–120.

    CAS  PubMed  Google Scholar 

  125. Bortul R, Tazzari PL, Cappellini A, Tabellini G, Billi AM, Bareggi R et al. Constitutively active Akt1 protects HL60 leukemia cells from TRAIL-induced apoptosis through a mechanism involving NF-κB activation and cFLIP(L) up-regulation. Leukemia 2003; 17: 379–389.

    CAS  PubMed  Google Scholar 

  126. Xu Q, Simpson SE, Scialla TJ, Bagg A, Carroll M . Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood 2003; 102: 972–980.

    CAS  PubMed  Google Scholar 

  127. Di Cristofano A, Pandolfi PP . The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387–390.

    CAS  PubMed  Google Scholar 

  128. Yilmaz OH, Valdez R, Theisen BK, Guo W, Ferguson DO, Wu H et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 2006; 441: 475–482.

    CAS  PubMed  Google Scholar 

  129. Zhang J, Grindley JC, Yin T, Jayasinghe S, He XC, Ross JT et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 2006; 441: 518–522.

    CAS  PubMed  Google Scholar 

  130. Chen BP, Fraser C, Reading C, Murray L, Uchida N, Galy A et al. Cytokine-mobilized peripheral blood CD34+ Thy-1 +Lin-human hematopoietic stem cells as target cells for transplantation-based gene therapy. Leukemia 1995; 9: S17–S25.

    PubMed  Google Scholar 

  131. Wendel HG, De Stanchina E, Fridman JS, Malina A, Ray S, Kogan S et al. Survival signalling by Akt and elF4E in oncogenesis and cancer therapy. Nature 2004; 428: 332–337.

    CAS  PubMed  Google Scholar 

  132. Ghosh S, Tergaonkar V, Rothlin CV, Correa RG, Bottero V, Bist P et al. Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival. Cancer Cell 2006; 10: 215–226.

    CAS  PubMed  Google Scholar 

  133. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EW, Chang F et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta 2007; 1773: 1263–1284.

    CAS  PubMed  Google Scholar 

  134. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    CAS  PubMed  Google Scholar 

  135. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS . Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997; 17: 4406–4418.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA . JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004; 18: 189–218.

    CAS  PubMed  Google Scholar 

  137. Daley GQ . Towards combination target-directed chemotherapy for chronic myeloid leukemia: role of farnesyl transferase inhibitors. Semin Hematol 2003; 40: 11–14.

    CAS  PubMed  Google Scholar 

  138. Buzzeo MP, Scott EW, Cogie CR . The hunt for cancer-initiating cells: a history stemming from leukemia. Leukemia 2007; 21: 1619–1627.

    CAS  PubMed  Google Scholar 

  139. Ninomiya M, Abe A, Katsumi A, Xu J, Ito M, Arai F et al. Homing, proliferation and survival sites of human leukemia cells in vivo in immunodeficient mice. Leukemia 2007; 21: 136–142.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

JAM and LSS have been supported in part by a grant from the NIH (R01098195). JB was supported in part by the Deutsche Krebshilfe. MC, MM and AT have been supported in part from grants from Associazione Italiana Ricerca sul Cancro (AIRC). FN has been supported in part by the grant PRIN from Ministero dell’Istruzione, dell’Università e della Ricerca. ML has been in part supported by the grant from Lega Italiana per la Lotta contro i Tumori. AMM has been supported in part by grants from the CARISBO Foundation and the Progetti Strategici Università di Bologna EF2006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A McCubrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misaghian, N., Ligresti, G., Steelman, L. et al. Targeting the leukemic stem cell: the Holy Grail of leukemia therapy. Leukemia 23, 25–42 (2009). https://doi.org/10.1038/leu.2008.246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.246

Keywords

This article is cited by

Search

Quick links