Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Minimal Risidual Disease

Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: is it possible to avoid MRD testing?

Abstract

The ALL IC-BFM 2002 protocol was created as an alternative to the MRD-based AIEOP-BFM ALL 2000 study, to integrate early response criteria into risk-group stratification in countries not performing routine PCR-based MRD testing. ALL IC stratification comprises the response to prednisone, bone marrow (BM) morphology at days 15 and 33, age, WBC and BCR/ABL or MLL/AF4 presence. Here, we compared this stratification to the MRD-based criteria using MRD evaluation in 163 patients from four ALL IC member countries at days 8, 15 and 33 and week 12. MRD negativity at day 33 was associated with an age of 1–5 years, WBC<20 000 μl−1, non-T immunophenotype, good prednisone response and non-M3 morphology at day 15. There were no significant associations with gender or hyperdiploidy in the study group, or with TEL/AML1 fusion within BCP-ALL. Patients with M1/2 BM at day 8 tended to be MRD negative at week 12. Patients stratified into the standard-risk group had a better response than intermediate-risk group patients. However, 34% of them were MRD positive at day 33 and/or week 12. Our findings revealed that morphology-based ALL IC risk-group stratification allows the identification of most MRD high-risk patients, but fails to discriminate the MRD low-risk group assigned to therapy reduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Cave H, van der Werff ten Bosch J, Suciu S, Guidal C, Waterkeyn C, Otten J et al. Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer—Childhood Leukemia Cooperative Group. N Engl J Med 1998; 339: 591–598.

    Article  CAS  Google Scholar 

  2. Coustan Smith E, Sancho J, Hancock ML, Boyett JM, Behm FG, Raimondi SC et al. Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood 2000; 96: 2691–2696.

    CAS  Google Scholar 

  3. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  Google Scholar 

  4. Arico M, Baruchel A, Bertrand Y, Biondi A, Conter V, Eden T et al. The seventh international childhood acute lymphoblastic leukemia workshop report: Palermo, Italy, January 29–30, 2005. Leukemia 2005; 19: 1145–1152.

    Article  CAS  Google Scholar 

  5. Pui CH, Relling MV, Sandlund JT, Downing JR, Campana D, Evans WE . Rationale and design of Total Therapy Study XV for newly diagnosed childhood acute lymphoblastic leukemia. Ann Hematol 2004; 83 (Suppl 1): S124–S126.

    Google Scholar 

  6. Schultz KR, Pullen DJ, Sather HN, Shuster JJ, Devidas M, Borowitz MJ et al. Risk- and response-based classification of childhood B-precursor acute lymphoblastic leukemia: a combined analysis of prognostic markers from the Pediatric Oncology Group (POG) and Children's Cancer Group (CCG). Blood 2007; 109: 926–935.

    Article  CAS  Google Scholar 

  7. Zhou J, Goldwasser MA, Li A, Dahlberg SE, Neuberg D, Wang H et al. Quantitative analysis of minimal residual disease predicts relapse in children with B-lineage acute lymphoblastic leukemia in DFCI ALL Consortium Protocol 95-01. Blood 2007; 110: 1607–1611.

    Article  CAS  Google Scholar 

  8. Stanulla M, Schaeffeler E, Flohr T, Cario G, Schrauder A, Zimmermann M et al. Thiopurine methyltransferase (TPMT) genotype and early treatment response to mercaptopurine in childhood acute lymphoblastic leukemia. JAMA 2005; 293: 1485–1489.

    Article  CAS  Google Scholar 

  9. van der Velden VH, Panzer-Grumayer ER, Cazzaniga G, Flohr T, Sutton R, Schrauder A et al. Optimization of PCR-based minimal residual disease diagnostics for childhood acute lymphoblastic leukemia in a multi-center setting. Leukemia 2007; 21: 706–713.

    Article  CAS  Google Scholar 

  10. Lauten M, Zimmermann M, Reiter A, Beier R, Gadner H, Niemeyer C et al. Bone marrow day 15 has an additional impact on the prediction of event free survival in children with acute lymphoblastic leukemia characterized by the prednisone response. Blood 2002; 100 (11): 69a, abstract [250].

    Google Scholar 

  11. Nachman JB, Sather HN, Sensel MG, Trigg ME, Cherlow JM, Lukens JN et al. Augmented post-induction therapy for children with high-risk acute lymphoblastic leukemia and a slow response to initial therapy. N Engl J Med 1998; 338: 1663–1671.

    Article  CAS  Google Scholar 

  12. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G et al. Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin-Frankfurt-Munster. Leukemia 2000; 14: 2205–2222.

    Article  CAS  Google Scholar 

  13. Bene MC, Castoldi G, Knapp W, Ludwig WD, Matutes E, Orfao A et al. Proposals for the immunological classification of acute leukemias. European Group for the Immunological Characterization of Leukemias (EGIL). Leukemia 1995; 9: 1783–1786.

    CAS  Google Scholar 

  14. Hiddemann W, Wormann B, Ritter J, Thiel E, Gohde W, Lahme B et al. Frequency and clinical significance of DNA aneuploidy in acute leukemia. Ann N Y Acad Sci 1986; 468: 227–240.

    Article  CAS  Google Scholar 

  15. Pongers-Willemse MJ, Seriu T, Stolz F, d’Aniello E, Gameiro P, Pisa P et al. Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets: report of the BIOMED-1 CONCERTED ACTION: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 110–118.

    Article  CAS  Google Scholar 

  16. Szczepanski T, Pongers Willemse MJ, Langerak AW, Harts WA, Wijkhuijs AJ, van Wering ER et al. Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood 1999; 93: 4079–4085.

    CAS  Google Scholar 

  17. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003; 17: 2257–2317.

    Article  CAS  Google Scholar 

  18. Langerak AW, Wolvers-Tettero IL, van Gastel-Mol EJ, Oud ME, van Dongen JJ . Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood 2001; 98: 2456–2465.

    Article  CAS  Google Scholar 

  19. van der Velden VH, Wijkhuijs JM, Jacobs DC, van Wering ER, van Dongen JJ . T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia 2002; 16: 1372–1380.

    Article  CAS  Google Scholar 

  20. van der Velden VH, Willemse MJ, van der Schoot CE, Hahlen K, van Wering ER, van Dongen JJ . Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia 2002; 16: 928–936.

    Article  CAS  Google Scholar 

  21. Verhagen OJ, Willemse MJ, Breunis WB, Wijkhuijs AJ, Jacobs DC, Joosten SA et al. Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia 2000; 14: 1426–1435.

    Article  CAS  Google Scholar 

  22. Pongers Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E et al. Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 1998; 12: 2006–2014.

    Article  CAS  Google Scholar 

  23. van der Velden VH, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER et al. Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 2007; 21: 604–611.

    Article  CAS  Google Scholar 

  24. Fronkova E, Madzo J, Zuna J, Reznickova L, Muzikova K, Hrusak O et al. TEL/AML 1 real-time quantitative reverse transcriptase PCR can complement minimal residual disease assessment in childhood ALL. Leukemia 2005; 19: 1296–1297.

    Article  CAS  Google Scholar 

  25. Willemse MJ, Seriu T, Hettinger K, d’Aniello E, Hop WC, Panzer Grumayer ER et al. Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood 2002; 99: 4386–4393.

    Article  CAS  Google Scholar 

  26. Panzer Grumayer ER, Schneider M, Panzer S, Fasching K, Gadner H . Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood 2000; 95: 790–794.

    CAS  Google Scholar 

  27. Basso G, Gaipa G, Valsecchi MG, Veltroni M, Dworczak M, Ratei R et al. Early evaluation of bone marrow minimal residual disease by flowcytometry on day 15 is feasible on a multicenter basis and bears strong prognostic value in childhood acute lymphoblastic leukemia. The AIEOP-BFM experience. Blood 2007; 110 (11): 426a, abstract [1423].

    Google Scholar 

  28. Mejstrikova E, Fronkova E, Batinic D, Dubravcic K, Kiss F, Kappelmayer J et al. Standardized 4 color flow cytometric minimal residual disease detection failed to overcome regeneration problems but identifies early blast clearence predictive of molecular remission after induction in childhood B lineage leukemia. Blood 2006; 108 (11): 521a–522a, abstract [1842].

    Google Scholar 

  29. Borowitz MJ, Pullen DJ, Shuster JJ, Viswanatha D, Montgomery K, Willman CL et al. Minimal residual disease detection in childhood precursor-B-cell acute lymphoblastic leukemia: relation to other risk factors. A Children's Oncology Group study. Leukemia 2003; 17: 1566–1572.

    Article  CAS  Google Scholar 

  30. Madzo J, Zuna J, Muzikova K, Kalinova M, Krejci O, Hrusak O et al. Slower molecular response to treatment predicts poor outcome in patients with TEL/AML1 positive acute lymphoblastic leukemia: prospective real-time quantitative reverse transcriptase-polymerase chain reaction study. Cancer 2003; 97: 105–113.

    Article  CAS  Google Scholar 

  31. Trueworthy R, Shuster J, Look T, Crist W, Borowitz M, Carroll A et al. Ploidy of lymphoblasts is the strongest predictor of treatment outcome in B-progenitor cell acute lymphoblastic leukemia of childhood: a Pediatric Oncology Group study. J Clin Oncol 1992; 10: 606–613.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by MSM0021620813, MZO00064203, MZdNR8269-3/2005, Israel Cancer Association and Children's Cancer Foundation of Hong Kong. We thank the following participating clinical centers for clinical management and sample collection: Czech Republic: Brno (J Sterba), Ceske Budejovice (Y Jabali), Hradec Králové (J Hak), Olomouc (V Mihál), Ostrava (B Blazek), Plzeň (Z Černá), Prague (J Stary), Ústí nad Labem (D Prochazkova); Israel: Afula (H Gavriel), Beer-Sheva (J Kapelushnik), Haifa Bnei-Zion (D Attias), Haifa Rambam (R Elhasid), Holon (A Ballin), Jerusalem Hadassah (M Weintraub), Jerusalem Shaarei Zedek (H Miskin), Petah-Tikva (G Avrahami), Rehovot (D Sthoeger), Tel Aviv (Y Burstein), Tel Hashomer (B Bielorai). We also thank S Bendova for sequencing and A Vrzalova for data management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Trka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronkova, E., Mejstrikova, E., Avigad, S. et al. Minimal residual disease (MRD) analysis in the non-MRD-based ALL IC-BFM 2002 protocol for childhood ALL: is it possible to avoid MRD testing?. Leukemia 22, 989–997 (2008). https://doi.org/10.1038/leu.2008.22

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2008.22

Keywords

This article is cited by

Search

Quick links