Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • State of the Art
  • Published:

State-of-the-Art

Cardiorespiratory events in preterm infants: etiology and monitoring technologies

Abstract

Every year, an estimated 15 million infants are born prematurely (<37 weeks gestation) with premature birth rates ranging from 5 to 18% across 184 countries. Although there are a multitude of reasons for this high rate of preterm birth, once birth occurs, a major challenge of infant care includes the stabilization of respiration and oxygenation. Clinical care of this vulnerable infant population continues to improve, yet there are major areas that have yet to be resolved including the identification of optimal respiratory support modalities and oxygen saturation targets, and reduction of associated short- and long-term morbidities. As intermittent hypoxemia is a consequence of immature respiratory control and resultant apnea superimposed upon an immature lung, improvements in clinical care must include a thorough knowledge of premature lung development and pathophysiology that is unique to premature birth. In Part 1 of a two-part review, we summarize early lung development and diagnostic methods for cardiorespiratory monitoring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  1. March of Dimes Foundation The Cost of Prematurity to U.S. Employers 2008 Available at: https://www.marchofdimes.org/peristats/pdfdocs/cts/ThomsonAnalysis2008_SummaryDocument_final121208.pdf.

  2. Soilly AL, Lejeune C, Quantin C, Bejean S, Gouyon JB . Economic analysis of the costs associated with prematurity from a literature review. Public Health 2014; 128 (1): 43–62.

    Article  CAS  PubMed  Google Scholar 

  3. Hislop A . Developmental biology of the pulmonary circulation. Paediatr Respir Rev 2005; 6 (1): 35–43.

    Article  PubMed  Google Scholar 

  4. Smith LJ, McKay KO, van Asperen PP, Selvadurai H, Fitzgerald DA . Normal development of the lung and premature birth. Paediatr Respir Rev 2010; 11 (3): 135–142.

    Article  PubMed  Google Scholar 

  5. Abman SH . Impaired vascular endothelial growth factor signaling in the pathogenesis of neonatal pulmonary vascular disease. Adv Exp Med Biol 2010; 661: 323–335.

    Article  CAS  PubMed  Google Scholar 

  6. Stark AR, Cohlan BA, Waggener TB, Frantz ID 3rd, Kosch PC . Regulation of end-expiratory lung volume during sleep in premature infants. J Appl Physiol (1985) 1987; 62 (3): 1117–1123.

    Article  CAS  Google Scholar 

  7. Poets CF, Rau GA, Neuber K, Gappa M, Seidenberg J . Determinants of lung volume in spontaneously breathing preterm infants. Am J Respir Crit Care Med 1997; 155 (2): 649–653.

    Article  CAS  PubMed  Google Scholar 

  8. Sands SA, Edwards BA, Kelly VJ, Skuza EM, Davidson MR, Wilkinson MH et al. Mechanism underlying accelerated arterial oxygen desaturation during recurrent apnea. Am J Respir Crit Care Med 2010; 182 (7): 961–969.

    Article  PubMed  Google Scholar 

  9. Gauda EB, Martin RJ . Avery's Disease of the Newborn, 4th edn. Saunders: Philadephia, 2012.

    Google Scholar 

  10. Finer NN, Higgins R, Kattwinkel J, Martin RJ . Summary proceedings from the apnea-of-prematurity group. Pediatrics 2006; 117 (3 Pt 2): S47–S51.

    Article  PubMed  Google Scholar 

  11. Adams JA, Zabaleta IA, Sackner MA . Hypoxemic events in spontaneously breathing premature infants: etiologic basis. Pediatr Res 1997; 42 (4): 463–471.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Matary A, Kutbi I, Qurashi M, Khalil M, Alvaro R, Kwiatkowski K et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol 2004; 28 (4): 264–272.

    Article  PubMed  Google Scholar 

  13. Rigatto H, Brady JP, de la Torre Verduzco R . Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics 1975; 55 (5): 604–613.

    CAS  PubMed  Google Scholar 

  14. MacFarlane PM, Ribeiro AP, Martin RJ . Carotid chemoreceptor development and neonatal apnea. Respir Physiol Neurobiol 2013; 185 (1): 170–176.

    Article  CAS  PubMed  Google Scholar 

  15. Nock ML, Difiore JM, Arko MK, Martin RJ . Relationship of the ventilatory response to hypoxia with neonatal apnea in preterm infants. J Pediatr 2004; 144 (3): 291–295.

    Article  PubMed  Google Scholar 

  16. Prabhakar NR, Peng YJ, Kumar GK, Pawar A . Altered carotid body function by intermittent hypoxia in neonates and adults: relevance to recurrent apneas. Respir Physiol Neurobiol 2007; 157 (1): 148–153.

    Article  CAS  PubMed  Google Scholar 

  17. Blain GM, Smith CA, Henderson KS, Dempsey JA . Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO(2). J Physiol 2010; 588 (Pt 13): 2455–2471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moriette G, Van Reempts P, Moore M, Cates D, Rigatto H . The effect of rebreathing CO2 on ventilation and diaphragmatic electromyography in newborn infants. Respir Physiol 1985; 62 (3): 387–397.

    Article  CAS  PubMed  Google Scholar 

  19. Prabhakar NR . Sensory plasticity of the carotid body: role of reactive oxygen species and physiological significance. Respir Physiol Neurobiol 2011; 178 (3): 375–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schultz HD, Marcus NJ, Del Rio R . Role of the carotid body in the pathophysiology of heart failure. Curr Hypertens Rep 2013; 15 (4): 356–362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koyama Y, Coker RH, Stone EE, Lacy DB, Jabbour K, Williams PE et al. Evidence that carotid bodies play an important role in glucoregulation in vivo. Diabetes 2000; 49 (9): 1434–1442.

    Article  CAS  PubMed  Google Scholar 

  22. Del Rio R, Andrade DC, Marcus NJ, Schultz HD . Selective carotid body ablation in experimental heart failure: a new therapeutic tool to improve cardiorespiratory control. Exp Physiol 2015; 100 (2): 136–142.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Abdala AP, McBryde FD, Marina N, Hendy EB, Engelman ZJ, Fudim M et al. Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol 2012; 590 (Pt 17): 4269–4277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. de Jong F, Monuteaux MC, van Elburg RM, Gillman MW, Belfort MB . Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension 2012; 59 (2): 226–234.

    Article  CAS  PubMed  Google Scholar 

  25. Bonamy AK, Kallen K, Norman M . High blood pressure in 2.5-year-old children born extremely preterm. Pediatrics 2012; 129 (5): e1199–e1204.

    Article  PubMed  Google Scholar 

  26. Sutherland MR, Bertagnolli M, Lukaszewski MA, Huyard F, Yzydorczyk C, Luu TM et al. Preterm birth and hypertension risk: the oxidative stress paradigm. Hypertension 2014; 63 (1): 12–18.

    Article  CAS  PubMed  Google Scholar 

  27. Thach BT . Maturation and transformation of reflexes that protect the laryngeal airway from liquid aspiration from fetal to adult life. Am J Med 2001; 111 (Suppl 8A): 69S–77S.

    Article  PubMed  Google Scholar 

  28. Grogaard J, Lindstrom DP, Stahlman MT, Marchal F, Sundell H . The cardiovascular response to laryngeal water administration in young lambs. J Dev Physiol 1982; 4 (6): 353–370.

    CAS  PubMed  Google Scholar 

  29. Lee JC, Stoll BJ, Downing SE . Properties of the laryngeal chemoreflex in neonatal piglets. Am J Physiol 1977; 233 (1): R30–R36.

    CAS  PubMed  Google Scholar 

  30. Woodson GE, Brauel G . Arterial chemoreceptor influences on the laryngeal chemoreflex. Otolaryngol Head Neck Surg 1992; 107 (6 Pt 1): 775–782.

    Article  CAS  PubMed  Google Scholar 

  31. Katz-Salamon M, Jonsson B, Lagercrantz H . Blunted peripheral chemoreceptor response to hyperoxia in a group of infants with bronchopulmonary dysplasia. Pediatr Pulmonol 1995; 20 (2): 101–106.

    Article  CAS  PubMed  Google Scholar 

  32. Laptook AR . Neurologic and metabolic issues in moderately preterm, late preterm, and early term infants. Clin Perinatol 2013; 40 (4): 723–738.

    Article  PubMed  Google Scholar 

  33. Wang LY, Luo HJ, Hsieh WS, Hsu CH, Hsu HC, Chen PS et al. Severity of bronchopulmonary dysplasia and increased risk of feeding desaturation and growth delay in very low birth weight preterm infants. Pediatr Pulmonol 2010; 45 (2): 165–173.

    Article  PubMed  Google Scholar 

  34. Grischkan J, Storfer-Isser A, Rosen CL, Larkin EK, Kirchner HL, South A et al. Variation in childhood asthma among former preterm infants. J Pediatr 2004; 144 (3): 321–326.

    Article  PubMed  Google Scholar 

  35. Stevens TP, Dylag A, Panthagani I, Pryhuber G, Halterman J . Effect of cumulative oxygen exposure on respiratory symptoms during infancy among VLBW infants without bronchopulmonary dysplasia. Pediatr Pulmonol 2010; 45 (4): 371–379.

    PubMed  Google Scholar 

  36. Been JV, Lugtenberg MJ, Smets E, van Schayck CP, Kramer BW, Mommers M et al. Preterm birth and childhood wheezing disorders: a systematic review and meta-analysis. PLoS Med 2014; 11 (1): e1001596.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Colin AA, McEvoy C, Castile RG . Respiratory morbidity and lung function in preterm infants of 32 to 36 weeks' gestational age. Pediatrics 2010; 126 (1): 115–128.

    Article  PubMed  Google Scholar 

  38. Poggi C, Dani C . Antioxidant strategies and respiratory disease of the preterm newborn: an update. Oxid Med Cell Longev 2014; 2014: 721043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dani C, Pratesi S, Barp J, Bertini G, Gozzini E, Mele L et al. Near-infrared spectroscopy measurements of splanchnic tissue oxygenation during continuous versus intermittent feeding method in preterm infants. J Pediatr Gastroenterol Nutr 2013; 56 (6): 652–656.

    Article  CAS  PubMed  Google Scholar 

  40. Saugstad OD . Oxidative stress in the newborn—a 30-year perspective. Biol Neonate 2005; 88 (3): 228–236.

    Article  CAS  PubMed  Google Scholar 

  41. Perrone S, Tataranno ML, Negro S, Longini M, Marzocchi B, Proietti F et al. Early identification of the risk for free radical-related diseases in preterm newborns. Early Hum Dev 2010; 86 (4): 241–244.

    Article  CAS  PubMed  Google Scholar 

  42. Vento M, Moro M, Escrig R, Arruza L, Villar G, Izquierdo I et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics 2009; 124 (3): e439–e449.

    Article  PubMed  Google Scholar 

  43. MacFarlane PM, Wilkerson JE, Lovett-Barr MR, Mitchell GS . Reactive oxygen species and respiratory plasticity following intermittent hypoxia. Respir Physiol Neurobiol 2008; 164 (1–2): 263–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu W, Chi L, Row BW, Xu R, Ke Y, Xu B et al. Increased oxidative stress is associated with chronic intermittent hypoxia-mediated brain cortical neuronal cell apoptosis in a mouse model of sleep apnea. Neuroscience 2004; 126 (2): 313–323.

    Article  CAS  PubMed  Google Scholar 

  45. Yuan G, Adhikary G, McCormick AA, Holcroft JJ, Kumar GK, Prabhakar NR . Role of oxidative stress in intermittent hypoxia-induced immediate early gene activation in rat PC12 cells. J Physiol 2004; 557 (Pt 3): 773–783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Peng YJ, Nanduri J, Yuan G, Wang N, Deneris E, Pendyala S et al. NADPH oxidase is required for the sensory plasticity of the carotid body by chronic intermittent hypoxia. J Neurosci 2009; 29 (15): 4903–4910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang ZY, Bisgard GE . Postnatal growth of the carotid body. Respir Physiol Neurobiol 2005; 149 (1–3): 181–190.

    Article  PubMed  Google Scholar 

  48. Dmitrieff EF, Piro SE, Broge TA Jr., Dunmire KB, Bavis RW . Carotid body growth during chronic postnatal hyperoxia. Respir Physiol Neurobiol 2012; 180 (2–3): 193–203.

    Article  PubMed  Google Scholar 

  49. Bavis RW, Kim I, Pradhan N, Nawreen N, Dmitrieff EF, Carroll JL et al. Recovery of carotid body O2 sensitivity following chronic postnatal hyperoxia in rats. Respir Physiol Neurobiol 2011; 177 (1): 47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hansen MK, Taishi P, Chen Z, Krueger JM . Vagotomy blocks the induction of interleukin-1beta (IL-1beta) mRNA in the brain of rats in response to systemic IL-1beta. J Neurosci 1998; 18 (6): 2247–2253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lindgren C, Grogaard J . Reflex apnoea response and inflammatory mediators in infants with respiratory tract infection. Acta Paediatr 1996; 85 (7): 798–803.

    Article  CAS  PubMed  Google Scholar 

  52. Hofstetter AO, Herlenius E . Interleukin-1beta depresses hypoxic gasping and autoresuscitation in neonatal DBA/1lacJ mice. Respir Physiol Neurobiol 2005; 146 (2–3): 135–146.

    Article  CAS  PubMed  Google Scholar 

  53. Koroglu OA, MacFarlane PM, Balan KV, Zenebe WJ, Jafri A, Martin RJ et al. Anti-inflammatory effect of caffeine is associated with improved lung function after lipopolysaccharide-induced amnionitis. Neonatology 2014; 106 (3): 235–240.

    Article  CAS  PubMed  Google Scholar 

  54. Julien CA, Joseph V, Bairam A . Alteration of carotid body chemoreflexes after neonatal intermittent hypoxia and caffeine treatment in rat pups. Respir Physiol Neurobiol 2011; 177 (3): 301–312.

    Article  CAS  PubMed  Google Scholar 

  55. Herlenius E, Aden U, Tang LQ, Lagercrantz H . Perinatal respiratory control and its modulation by adenosine and caffeine in the rat. Pediatr Res 2002; 51 (1): 4–12.

    Article  CAS  PubMed  Google Scholar 

  56. Carnielli VP, Verlato G, Benini F, Rossi K, Cavedagni M, Filippone M et al. Metabolic and respiratory effects of theophylline in the preterm infant. Arch Dis Child Fetal Neonatal Ed 2000; 83 (1): F39–F43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Biran V, Phan Duy A, Decobert F, Bednarek N, Alberti C, Baud O . Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol 2014; 56 (8): 717–723.

    Article  PubMed  Google Scholar 

  58. Kaur C, Viswanathan S, Ling EA . Hypoxia-induced cellular and vascular changes in the nucleus tractus solitarius and ventrolateral medulla. J Neuropathol Exp Neurol 2011; 70 (3): 201–217.

    Article  CAS  PubMed  Google Scholar 

  59. Hardeland R . Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine 2005; 27 (2): 119–130.

    Article  CAS  PubMed  Google Scholar 

  60. Marret S, Mukendi R, Gadisseux JF, Gressens P, Evrard P . Effect of ibotenate on brain development: an excitotoxic mouse model of microgyria and posthypoxic-like lesions. J Neuropathol Exp Neurol 1995; 54 (3): 358–370.

    Article  CAS  PubMed  Google Scholar 

  61. Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res 2007; 61 (2): 153–158.

    Article  CAS  PubMed  Google Scholar 

  62. Villapol S, Fau S, Renolleau S, Biran V, Charriaut-Marlangue C, Baud O . Melatonin promotes myelination by decreasing white matter inflammation after neonatal stroke. Pediatr Res 2011; 69 (1): 51–55.

    Article  CAS  PubMed  Google Scholar 

  63. Davis JM, Parad RB, Michele T, Allred E, Price A, Rosenfeld W . Pulmonary outcome at 1 year corrected age in premature infants treated at birth with recombinant human CuZn superoxide dismutase. Pediatrics 2003; 111 (3): 469–476.

    Article  PubMed  Google Scholar 

  64. Padmanabhan RV, Gudapaty R, Liener IE, Schwartz BA, Hoidal JR . Protection against pulmonary oxygen toxicity in rats by the intratracheal administration of liposome-encapsulated superoxide dismutase or catalase. Am Rev Respir Dis 1985; 132 (1): 164–167.

    CAS  PubMed  Google Scholar 

  65. Davis JM, Rosenfeld WN, Sanders RJ, Gonenne A . Prophylactic effects of recombinant human superoxide dismutase in neonatal lung injury. J Appl Physiol (1985) 1993; 74 (5): 2234–2241.

    Article  CAS  Google Scholar 

  66. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med 2010; 362 (21): 1959–1969.

    Article  CAS  PubMed  Google Scholar 

  67. Stenson B, Brocklehurst P, Tarnow-Mordi W . Increased 36-week survival with high oxygen saturation target in extremely preterm infants. N Engl J Med 2011; 364 (17): 1680–1682.

    Article  CAS  PubMed  Google Scholar 

  68. Stiller R, von Mering R, Konig V, Huch A, Huch R . How well does reflectance pulse oximetry reflect intrapartum fetal acidosis? Am J Obstet Gynecol 2002; 186 (6): 1351–1357.

    Article  PubMed  Google Scholar 

  69. Mayer CA, Di Fiore JM, Martin RJ, Macfarlane PM . Vulnerability of neonatal respiratory neural control to sustained hypoxia during a uniquely sensitive window of development. J Appl Physiol (1985) 2014; 116 (5): 514–521.

    Article  CAS  Google Scholar 

  70. Wong-Riley MT, Liu Q, Gao XP . Peripheral-central chemoreceptor interaction and the significance of a critical period in the development of respiratory control. Respir Physiol Neurobiol 2013; 185 (1): 156–169.

    Article  CAS  PubMed  Google Scholar 

  71. Popa D, Fu Z, Go A, Powell FL . Ibuprofen blocks time-dependent increases in hypoxic ventilation in rats. Respir Physiol Neurobiol 2011; 178 (3): 381–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hanson MA, Kumar P, Williams BA . The effect of chronic hypoxia upon the development of respiratory chemoreflexes in the newborn kitten. J Physiol 1989; 411: 563–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gauda EB, Shirahata M, Mason A, Pichard LE, Kostuk EW, Chavez-Valdez R . Inflammation in the carotid body during development and its contribution to apnea of prematurity. Respir Physiol Neurobiol 2013; 185 (1): 120–131.

    Article  PubMed  Google Scholar 

  74. Mayer CA, Ao J, Di Fiore JM, Martin RJ, MacFarlane PM . Impaired hypoxic ventilatory response following neonatal sustained and subsequent chronic intermittent hypoxia in rats. Respir Physiol Neurobiol 2013; 187 (2): 167–175.

    Article  CAS  PubMed  Google Scholar 

  75. Mayer CA, Wilson CG, MacFarlane PM . Changes in carotid body and nTS neuronal excitability following neonatal sustained and chronic intermittent hypoxia exposure. Respir Physiol Neurobiol 2015; 205: 28–36.

    Article  CAS  PubMed  Google Scholar 

  76. Baird TM, Goydos JM, Neuman MR . Optimal electrode location for monitoring the ECG and breathing in neonates. Pediatr Pulmonol 1992; 12 (4): 247–250.

    Article  CAS  PubMed  Google Scholar 

  77. Moorman JR, Delos JB, Flower AA, Cao H, Kovatchev BP, Richman JS et al. Cardiovascular oscillations at the bedside: early diagnosis of neonatal sepsis using heart rate characteristics monitoring. Physiol Meas 2011; 32 (11): 1821–1832.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Villain E, Levy M, Kachaner J, Garson A Jr . Prolonged QT interval in neonates: benign, transient, or prolonged risk of sudden death. Am Heart J 1992; 124 (1): 194–197.

    Article  CAS  PubMed  Google Scholar 

  79. Farré R, Montserrat JM, Rotger M, Ballester E, Navajas D . Accuracy of thermistors and thermocouples as flow-measuring devices for detecting hypopnoeas. Eur Respir J 1998; 11 (1): 179–182.

    Article  PubMed  Google Scholar 

  80. Brooks LJ, DiFiore JM, Martin RJ . Assessment of tidal volume over time in preterm infants using respiratory inductance plethysmography, The CHIME Study Group. Collaborative Home Infant Monitoring Evaluation. Pediatr Pulmonol 1997; 23 (6): 429–433.

    Article  CAS  PubMed  Google Scholar 

  81. Erickson SJ, Grauaug A, Gurrin L, Swaminathan M . Hypocarbia in the ventilated preterm infant and its effect on intraventricular haemorrhage and bronchopulmonary dysplasia. J Paediatr Child Health 2002; 38 (6): 560–562.

    Article  CAS  PubMed  Google Scholar 

  82. Okumura A, Hayakawa F, Kato T, Itomi K, Maruyama K, Ishihara N et al. Hypocarbia in preterm infants with periventricular leukomalacia: the relation between hypocarbia and mechanical ventilation. Pediatrics 2001; 107 (3): 469–475.

    Article  CAS  PubMed  Google Scholar 

  83. McKee LA, Fabres J, Howard G, Peralta-Carcelen M, Carlo WA, Ambalavanan N . PaCO2 and neurodevelopment in extremely low birth weight infants. J Pediatr 2009; 155 (2): 217–221 e211.

    Article  PubMed  Google Scholar 

  84. Sorensen LC, Brage-Andersen L, Greisen G . Effects of the transcutaneous electrode temperature on the accuracy of transcutaneous carbon dioxide tension. Scand J Clin Lab Invest 2011; 71 (7): 548–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sandberg KL, Brynjarsson H, Hjalmarson O . Transcutaneous blood gas monitoring during neonatal intensive care. Acta Paediatr 2011; 100 (5): 676–679.

    Article  PubMed  Google Scholar 

  86. Tingay DG, Stewart MJ, Morley CJ . Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 2005; 90 (6): F523–F526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Tingay DG, Mun KS, Perkins EJ . End tidal carbon dioxide is as reliable as transcutaneous monitoring in ventilated postsurgical neonates. Arch Dis Child Fetal Neonatal Ed 2013; 98 (2): F161–F164.

    Article  PubMed  Google Scholar 

  88. Molloy EJ, Deakins K . Are carbon dioxide detectors useful in neonates? Arch Dis Child Fetal Neonatal Ed 2006; 91 (4): F295–F298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Trevisanuto D, Giuliotto S, Cavallin F, Doglioni N, Toniazzo S, Zanardo V . End-tidal carbon dioxide monitoring in very low birth weight infants: correlation and agreement with arterial carbon dioxide. Pediatr Pulmonol 2012; 47 (4): 367–372.

    Article  PubMed  Google Scholar 

  90. Hillier SC, Badgwell JM, McLeod ME, Creighton RE, Lerman J . Accuracy of end-tidal PCO2 measurements using a sidestream capnometer in infants and children ventilated with the Sechrist infant ventilator. Can J Anaesth 1990; 37 (3): 318–321.

    Article  CAS  PubMed  Google Scholar 

  91. Raemer DB, Calalang I . Accuracy of end-tidal carbon dioxide tension analyzers. J Clin Monit 1991; 7 (2): 195–208.

    Article  CAS  PubMed  Google Scholar 

  92. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr 2010; 157 (1): 69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Poets CF, Samuels MP, Noyes JP, Jones KA, Southall DP . Home monitoring of transcutaneous oxygen tension in the early detection of hypoxaemia in infants and young children. Arch Dis Child 1991; 66 (6): 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Poets CF, Southall DP . Noninvasive monitoring of oxygenation in infants and children: practical considerations and areas of concern. Pediatrics 1994; 93 (5): 737–746.

    CAS  PubMed  Google Scholar 

  95. Trivedi NS, Ghouri AF, Shah NK, Lai E, Barker SJ . Effects of motion, ambient light, and hypoperfusion on pulse oximeter function. J Clin Anesth 1997; 9 (3): 179–183.

    Article  CAS  PubMed  Google Scholar 

  96. Schmidt B, Whyte RK, Asztalos EV, Moddemann D, Poets C, Rabi Y et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA 2013; 309 (20): 2111–2120.

    Article  CAS  PubMed  Google Scholar 

  97. Johnston ED, Boyle B, Juszczak E, King A, Brocklehurst P, Stenson BJ . Oxygen targeting in preterm infants using the Masimo SET Radical pulse oximeter. Arch Dis Child Fetal Neonatal Ed 2011; 96 (6): F429–F433.

    Article  PubMed  Google Scholar 

  98. Vagedes J, Poets CF, Dietz K . Averaging time, desaturation level, duration and extent. Arch Dis Child Fetal Neonatal Ed 2013; 98 (3): F265–F266.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Di Fiore.

Ethics declarations

Competing interests

Dr Poets received a research grant from Chiesi Farmaceutici, Parma, Italy, the manufacturer of caffeine citrate in Europe, for a study unrelated to the work submitted. The other authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fiore, J., Poets, C., Gauda, E. et al. Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J Perinatol 36, 165–171 (2016). https://doi.org/10.1038/jp.2015.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2015.164

This article is cited by

Search

Quick links