Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Hemodynamic monitoring in neonates: advances and challenges

Abstract

Continuous, reliable and real-time assessment of major determinants of cardiovascular function in preterm and term neonates has long been an elusive aim in neonatal medicine. Accordingly, aside from continuous assessment of heart rate, blood pressure and arterial oxygen saturation, bedside monitoring of major determinants of cardiovascular function of significant clinical relevance such as cardiac output, systemic vascular resistance, organ blood flow distribution and tissue oxygen delivery and coupling has only recently become available. Without obtaining reliable information on the changes in and interactions among these parameters in the neonatal patient population during postnatal transition and later in the neonatal period, development of effective and less harmful treatment approaches to cardiovascular compromise is not possible. This paper briefly reviews the recent advances in our understanding of developmental cardiovascular physiology and discusses the methods of bedside assessment of cardiovascular function in general and organ perfusion, tissue oxygen delivery and brain function in particular in preterm and term neonates. The importance of real-time data collection and the need for meticulous validation of the methods recently introduced in the assessment of neonatal cardiovascular function such as echocardiography, electrical impedance cardiometry, near infrared spectroscopy, visible light and laser-Doppler technology are emphasized. A clear understanding of the accuracy, feasibility, reliability and limitations of these methods through thorough validation will result in the most appropriate usage of these methods in clinical research and patient care.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Noori S, Seri I . Etiology, pathophysiology and phases of neonatal shock. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 3–18.

    Chapter  Google Scholar 

  2. Noori S, Stavroudis TA, Seri I . Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol 2009; 36: 723–736.

    Article  PubMed  Google Scholar 

  3. Evans N, Seri I . Cardiovascular compromise in the newborn infant. In: Taeusch HW, Ballard RA, Gleason CA (eds). Avery's Diseases of the Newborn, 8th edn, WB Saunders: Philadelphia, 2004, pp 398–409.

    Google Scholar 

  4. Miall-Allen VM, De Vries LS, Whitelaw AGL . Mean arterial blood pressure and neonatal cerebral lesions. Arch Dis Child 1987; 62: 1068–1069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Watkins AM, West CR, Cooke RW . Blood pressure and cerebral hemorrhage and ischemia in very low birth weight infants. Early Hum Dev 1989; 19: 103–110.

    Article  CAS  PubMed  Google Scholar 

  6. Bada HS, Korones SB, Perry EH, Arheart KL, Ray JD, Pourcyrous M et al. Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr 1990; 117: 607–614.

    Article  CAS  PubMed  Google Scholar 

  7. Goldstein RF, Thompson RJ, Oehler JM, Brazy JE . Influence of acidosis, hypoxaemia, and hypotension on neurodevelopmental outcome in very low birth weight infants. Pediatrics 1995; 95: 238–243.

    CAS  PubMed  Google Scholar 

  8. Kluckow M, Evans N . Low superior vena cava flow and intraventricular hemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed 2000; 82: F188–F194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hunt RW, Evans N, Rieger I, Kluckow M . Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr 2004; 145: 588–592.

    Article  PubMed  Google Scholar 

  10. Fanaroff JM, Wilson-Costello DE, Newman NS, Montpetite MM, Fanaroff AA . Treated hypotension is associated with neonatal morbidity and hearing loss in extremely low birth weight infants. Pediatrics 2006; 117: 1131–1135.

    Article  PubMed  Google Scholar 

  11. Pellicer A, del Carmen Bravo M, Madero R, Salas S, Quero J, Cabañas F . Early systemic hypotension and vasopressor support in low birth weight infants: impact on neurodevelopment. Pediatrics 2009; 123: 1369–1376.

    Article  PubMed  Google Scholar 

  12. Greisen G . Use of organ blood flow assessment in the diagnosis of neonatal shock. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 69–82.

    Chapter  Google Scholar 

  13. Kluckow M, Seri I, Evans N . Functional echocardiography—an emerging clinical tool for the neonatologist. Medical Progress Article J Pediatr 2007; 150: 125–130.

    Google Scholar 

  14. Victor S, Weindling M . Near infrared spectroscopy and its use for the assessment of tissue perfusion in the neonate. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 110–132.

    Chapter  Google Scholar 

  15. Barrington KJ, Dempsey EM . Cardiovascular support in the preterm: treatments in search of indications. J Pediatr 2006; 148: 289–291.

    Article  CAS  PubMed  Google Scholar 

  16. Hernandez MJ, Hawkins RA, Brennan RW . Sympathetic control of regional cerebral blood flow in the asphyxiated newborn dog. In: Heistad DD, Marcus ML (eds). Cerebral Blood Flow, Effects of Nerves and Neurotransmitters. Elsevier: New York, 1982, pp 359–366.

    Google Scholar 

  17. Ashwal S, Dale PS, Longo LD . Regional cerebral blood flow: studies in the fetal lamb during hypoxia, hypercapnia, acidosis, and hypotension. Pediatr Res 1984; 18: 1309–1316.

    Article  CAS  PubMed  Google Scholar 

  18. Brown DW, Picot PA, Naeini JG, Springett R, Delpy DT, Lee TY . Quantitative near infrared spectroscopy measurement of cerebral hemodynamics in newborn piglets. Pediatr Res 2002; 51: 564–570.

    Article  PubMed  Google Scholar 

  19. Müller T, Löhle M, Schubert H, Bauer R, Wicher C, Antonow-Schlorke I et al. Developmental changes in cerebral autoregulatory capacity in the fetal sheep parietal cortex. J Physiol 2002; 539 (Part 3): 957–967.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tibby SM, Ian A, Murdoch IA . Measurement of cardiac output and tissue perfusion. Cur Opinion Pediatr 2002; 14: 303–309.

    Article  Google Scholar 

  21. Dempsey EM, Alhazzani F, Barrington KJ . Permissive hypotension in the extremely low birth weight infant with signs of good perfusion. Arch Dis Child Fetal Neonatal Ed 2009; 94: F241–F244.

    Article  CAS  PubMed  Google Scholar 

  22. Seri I . Circulatory support of the sick newborn infant. Semin Neonatol 2001; 6: 85–95.

    Article  CAS  PubMed  Google Scholar 

  23. Nagdyman N, Ewert P, Peters BRN, Miera O, Fleck T, Berger F . Comparison of different near-infrared spectroscopic cerebral oxygenation indices with central venous and jugular venous oxygenation saturation in children. Pediatr Anesth 2008; 18: 160–166.

    Google Scholar 

  24. van Bel F, Lemmers P, Naulaers G . Monitoring neonatal regional cerebral oxygen saturation in clinical practice: value and pitfalls. Neonatology 2008; 94: 237–244.

    Article  CAS  PubMed  Google Scholar 

  25. Wong FY, Barfield CP, Horne RSC, Walker AM . Dopamine therapy promotes cerebral flow-metabolism coupling in preterm infants. Intensive Care Med 2009; 35: 1777–1782.

    Article  CAS  PubMed  Google Scholar 

  26. Krimer LS, Muly EC, Williams GV, Goldman-Rakic PS . Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1998; 1: 286–289.

    Article  CAS  PubMed  Google Scholar 

  27. Kissack CM, Garr R, Wardle SP, Weindling AM . Postnatal changes in cerebral oxygen extraction in the preterm infant are associated with intraventricular hemorrhage and hemorrhagic parenchymal infarction but not periventricular leukomalacia. Pediatr Res 2004; 56: 111–116.

    Article  PubMed  Google Scholar 

  28. Meek JH, Tyszczuk L, Elwell CE, Wyatt JS . Low cerebral blood flow is a risk factor for severe intraventricular hemorrhage. Arch Dis Child Fetal Neonatal Ed 1999; 81: F15–F18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Greisen G . Autoregulation of vital and non-vital organ blood flow in the preterm and term neonate. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 19–38.

    Chapter  Google Scholar 

  30. Borzage TM, Nelson M, Seri I, Blüml S . Simultaneous BOLD and NIRS signal correlation during hypoxia. Annual PAS/SPR Meeting 2010; Vancouver, Abstract.

  31. Noori S, Drabu B, Seri I . Continuous non-invasive cardiac output measurements in the neonate by electrical cardiometry: a comparison with echocardiography. Annual PAS/SPR Meeting 2010; Vancouver, Abstract.

  32. Soleymani S, Cayabyab R, Borzage TM, Seri I . Comparison between charted and continuously recorded vital signs and hemodynamic data. Annual PAS/SPR Meeting 2010; Vancouver, Abstract.

  33. Norozi K, Beck C, Osthaus WA, Wille I, Wessel A, Bertram H . Electrical velocimetry for measuring cardiac output in children with congenital heart disease. Br J Anaesth 2008; 100: 88–94.

    Article  CAS  PubMed  Google Scholar 

  34. Amir G, Ramamoorthy C, Riemer RK, Davis CR, Hanley FL, Reddy VM . Visual light spectroscopy reflects flow-related changes in brain oxygenation during regional low-flow perfusion and deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2006; 132: 1307–1313.

    Article  PubMed  Google Scholar 

  35. Nuntnarumit P, Yang W, Bada-Ellzey HS . Blood pressure measurements in the newborn. Clin Perinatol 1999; 26: 981–996.

    Article  CAS  PubMed  Google Scholar 

  36. Darnall RA . Blood pressure monitoring. In: Brans Y, Hay WJ, (eds). Physiological Monitoring and Instrument Diagnosis in Perinatal and Neonatal Medicine. Cambridge University Press: Cambridge, 1995, pp 246–266.

    Google Scholar 

  37. Engle WD . Definition of normal blood pressure range: the elusive target. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 39–68.

    Chapter  Google Scholar 

  38. Shiao SY, Ou CN . Validation of oxygen saturation monitoring in neonates. Am J Crit Care 2007; 16: 168–178.

    PubMed  PubMed Central  Google Scholar 

  39. Kluckow M, Seri I . Clinical presentations of neonatal shock: the VLBW infant during the first postnatal day. In: Kleinman C, Seri I (eds). Neonatology Questions and Controversies: Hemodynamics and Cardiology. Saunders/Elsevier: Philadelphia, 2008, pp 147–177.

    Chapter  Google Scholar 

  40. Stark MJ, Clifton VL, Wright IMR . Carbon monoxide is a significant mediator of cardiovascular status following preterm birth. Pediatrics 2009; 124: 277–284.

    Article  PubMed  Google Scholar 

  41. Hiedl S, Schwepcke A, Weber F, Genzel-Boroviczeny O . Microcirculation in preterm infants: profound effects of patent ductus arteriosus. J Pediatr 2010; 156: 191–196.

    Article  PubMed  Google Scholar 

  42. Rennie JM, Chorley G, Boylan GB, Pressler R, Nguyen Y, Hooper R . Non-expert use of the cerebral function monitor for neonatal seizure detection. Arch Dis Child Fetal Neonatal Ed 2004; 89: F37–F40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Toet MC, Lemmers PMA, van Schelven LJ, van Bel F . Cerebral oxygenation and electrical activity after birth asphyxia: their relation to outcome. Pediatrics 2006; 117: 333–339.

    Article  PubMed  Google Scholar 

  44. West CR, Groves AM, Williams CE, Harding JE, Skinner JR, Kuschel CA et al. Early low cardiac output is associated with compromised electroencephalographic activity in very preterm infants. Pediatr Res 2006; 59: 610–615.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Dr Seri was a member of the Scientific Advisory Committee on Surfactant Use at Dey LP (2004–2009) and has received grant support for clinical research from Somanetics (2009–2010). This paper resulted from the Evidence vs Experience in Neonatal Practices conference, 19–20 June 2009, sponsored by Dey LP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Seri.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

This paper resulted from the Evidence vs Experience in Neonatal Practices conference, 19 to 20 June 2009, sponsored by Dey, LP.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soleymani, S., Borzage, M. & Seri, I. Hemodynamic monitoring in neonates: advances and challenges. J Perinatol 30 (Suppl 1), S38–S45 (2010). https://doi.org/10.1038/jp.2010.101

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2010.101

Keywords

This article is cited by

Search

Quick links