Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Role of iNO in the modulation of pulmonary vascular resistance

Abstract

Inhaled nitric oxide (iNO) has quickly become a standard therapy for term and near-term infants with hypoxic respiratory failure and persistent pulmonary hypertension. Its effect on the lung is believed to be through the stimulation of soluble guanylyl cyclase and the increased production of cyclic guanosine 3′,5′-monophosphate (cGMP). However, in addition to pulmonary vasodilation and a decrease in pulmonary vascular resistance, nitric oxide (NO) shows several additional potential beneficial effects on the lung. This article reviews NO mechanisms of action, early clinical trial of iNO and clinical aspects for the use of iNO in acute respiratory failure of the term and near-tem neonates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Furchgott RF, Zawadzki JV . The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288 (5789): 373–376.

    Article  CAS  Google Scholar 

  2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G . Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA 1987; 84 (24): 9265–9269.

    Article  CAS  Google Scholar 

  3. Palmer RM, Ferrige AG, Moncada S . Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 1987; 327 (6122): 524–526.

    Article  CAS  Google Scholar 

  4. Murad F . The 1996 Albert Lasker Medical Research Awards. Signal transduction using nitric oxide and cyclic guanosine monophosphate. JAMA 1996; 276 (14): 1189–1192.

    Article  CAS  Google Scholar 

  5. Griffiths MJ, Evans TW . Inhaled nitric oxide therapy in adults. N Engl J Med 2005; 353 (25): 2683–2695.

    Article  CAS  Google Scholar 

  6. Schechter AN, Gladwin MT . Hemoglobin and the paracrine and endocrine functions of nitric oxide. N Engl J Med 2003; 348 (15): 1483–1485.

    Article  CAS  Google Scholar 

  7. Frostell C, Fratacci MD, Wain JC, Jones R, Zapol WM . Inhaled nitric oxide. A selective pulmonary vasodilator reversing hypoxic pulmonary vasoconstriction. Circulation 1991; 83 (6): 2038–2047.

    Article  CAS  Google Scholar 

  8. Pepke-Zaba J, Higenbottam TW, Dinh-Xuan AT, Stone D, Wallwork J . Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338 (8776): 1173–1174.

    Article  CAS  Google Scholar 

  9. Roberts JD, Polaner DM, Lang P, Zapol WM . Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340 (8823): 818–819.

    Article  CAS  Google Scholar 

  10. Kinsella JP, Neish SR, Shaffer E, Abman SH . Low-dose inhalation nitric oxide in persistent pulmonary hypertension of the newborn. Lancet 1992; 340 (8823): 819–820.

    Article  CAS  Google Scholar 

  11. The Neonatal Inhaled Nitric Oxide Study Group. Inhaled nitric oxide in full-term and nearly full-term infants with hypoxic respiratory failure. N Engl J Med 1997; 336 (9): 597–604.

    Article  Google Scholar 

  12. Roberts Jr JD, Fineman JR, Morin III FC, Shaul PW, Rimar S, Schreiber MD et al. Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med 1997; 336 (9): 605–610.

    Article  CAS  Google Scholar 

  13. Clark RH, Kueser TJ, Walker MW, Southgate WM, Huckaby JL, Perez JA et al. Low-dose nitric oxide therapy for persistent pulmonary hypertension of the newborn. Clinical Inhaled Nitric Oxide Research Group. N Engl J Med 2000; 342 (7): 469–474.

    Article  CAS  Google Scholar 

  14. Martin RJ, Walsh MC . Inhaled nitric oxide for preterm infants—who benefits? N Engl J Med 2005; 353 (1): 82–84.

    Article  CAS  Google Scholar 

  15. Roberts Jr JD, Chiche JD, Weimann J, Steudel W, Zapol WM, Bloch KD . Nitric oxide inhalation decreases pulmonary artery remodeling in the injured lungs of rat pups. Circ Res 2000; 87 (2): 140–145.

    Article  CAS  Google Scholar 

  16. Barbotin-Larrieu F, Mazmanian M, Baudet B, Detruit H, Chapelier A, Libert JM et al. Prevention of ischemia–reperfusion lung injury by inhaled nitric oxide in neonatal piglets. J Appl Physiol 1996; 80 (3): 782–788.

    Article  CAS  Google Scholar 

  17. Shaul PW, Yuhanna IS, German Z, Chen Z, Steinhorn RH, Morin III FC . Pulmonary endothelial NO synthase gene expression is decreased in fetal lambs with pulmonary hypertension. Am J Physiol 1997; 272 (5 Part 1): L1005–L1012.

    CAS  PubMed  Google Scholar 

  18. Finer NN, Barrington KJ . Nitric oxide for respiratory failure in infants born at or near term. Cochrane Database Syst Rev 2006; (4): CD000399.

  19. Clark PL, Ekekezie II, Kaftan HA, Castor CA, Truog WE . Safety and efficacy of nitric oxide in chronic lung disease. Arch Dis Child Fetal Neonatal Ed 2002; 86 (1): F41–F45.

    Article  CAS  Google Scholar 

  20. Banks BA, Seri I, Ischiropoulos H, Merrill J, Rychik J, Ballard RA . Changes in oxygenation with inhaled nitric oxide in severe bronchopulmonary dysplasia. Pediatrics 1999; 103 (3): 610–618.

    Article  CAS  Google Scholar 

  21. Konduri GG, Vohr B, Robertson C, Sokol GM, Solimano A, Singer J et al. Early inhaled nitric oxide therapy for term and near-term newborn infants with hypoxic respiratory failure: neurodevelopmental follow-up. J Pediatr 2007; 150 (3): 235–240, 240 e1.

    Article  CAS  Google Scholar 

  22. Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R et al. Inhaled nitric oxide for the early treatment of persistent pulmonary hypertension of the term newborn: a randomized, double-masked, placebo-controlled, dose–response, multicenter study. The I-NO/PPHN Study Group. Pediatrics 1998; 101 (3 Part 1): 325–334.

    Article  CAS  Google Scholar 

  23. Guthrie SO, Walsh WF, Auten K, Clark RH . Initial dosing of inhaled nitric oxide in infants with hypoxic respiratory failure. J Perinatol 2004; 24 (5): 290–294.

    Article  CAS  Google Scholar 

  24. Loh E, Stamler JS, Hare JM, Loscalzo J, Colucci WS . Cardiovascular effects of inhaled nitric oxide in patients with left ventricular dysfunction. Circulation 1994; 90 (6): 2780–2785.

    Article  CAS  Google Scholar 

  25. Semigran MJ, Cockrill BA, Kacmarek R, Thompson BT, Zapol WM, Dec GW et al. Hemodynamic effects of inhaled nitric oxide in heart failure. J Am Coll Cardiol 1994; 24 (4): 982–988.

    Article  CAS  Google Scholar 

  26. Davidson D, Barefield ES, Kattwinkel J, Dudell G, Damask M, Straube R et al. Safety of withdrawing inhaled nitric oxide therapy in persistent pulmonary hypertension of the newborn. Pediatrics 1999; 104 (2 Part 1): 231–236.

    Article  CAS  Google Scholar 

  27. Oishi P, Grobe A, Benavidez E, Ovadia B, Harmon C, Ross GA et al. Inhaled nitric oxide induced NOS inhibition and rebound pulmonary hypertension: a role for superoxide and peroxynitrite in the intact lamb. Am J Physiol Lung Cell Mol Physiol 2006; 290 (2): L359–L366.

    Article  CAS  Google Scholar 

  28. Kirmse M, Hess D, Fujino Y, Kacmarek RM, Hurford WE . Delivery of inhaled nitric oxide using the Ohmeda INOvent Delivery System. Chest 1998; 113 (6): 1650–1657.

    Article  CAS  Google Scholar 

  29. Hogman M, Frostell C, Arnberg H, Hedenstierna G . Bleeding time prolongation and NO inhalation. Lancet 1993; 341 (8861): 1664–1665.

    Article  CAS  Google Scholar 

  30. Samama CM, Diaby M, Fellahi JL, Mdhafar A, Eyraud D, Arock M et al. Inhibition of platelet aggregation by inhaled nitric oxide in patients with acute respiratory distress syndrome. Anesthesiology 1995; 83 (1): 56–65.

    Article  CAS  Google Scholar 

  31. Ballard PL, Merrill JD, Truog WE, Godinez RI, Godinez MH, McDevitt TM et al. Surfactant function and composition in premature infants treated with inhaled nitric oxide. Pediatrics 2007; 120 (2): 346–353.

    Article  Google Scholar 

  32. Truog WE, Ballard PL, Norberg M, Golombek S, Savani RC, Merrill JD et al. Inflammatory markers and mediators in tracheal fluid of premature infants treated with inhaled nitric oxide. Pediatrics 2007; 119 (4): 670–678.

    Article  Google Scholar 

  33. Mestan KK, Marks JD, Hecox K, Huo D, Schreiber MD . Neurodevelopmental outcomes of premature infants treated with inhaled nitric oxide. N Engl J Med 2005; 353 (1): 23–32.

    Article  CAS  Google Scholar 

  34. The Neonatal Inhaled Nitric Oxide Study Group (NINOS). Inhaled nitric oxide and hypoxic respiratory failure in infants with congenital diaphragmatic hernia. Pediatrics 1997; 99 (6): 838–845.

    Article  Google Scholar 

  35. Kinsella JP, Parker TA, Ivy DD, Abman SH . Noninvasive delivery of inhaled nitric oxide therapy for late pulmonary hypertension in newborn infants with congenital diaphragmatic hernia. J Pediatr 2003; 142 (4): 397–401.

    Article  CAS  Google Scholar 

  36. Ladha F, Bonnet S, Eaton F, Hashimoto K, Korbutt G, Thebaud B . Sildenafil improves alveolar growth and pulmonary hypertension in hyperoxia-induced lung injury. Am J Respir Crit Care Med 2005; 172 (6): 750–756.

    Article  Google Scholar 

  37. Atz AM, Wessel DL . Sildenafil ameliorates effects of inhaled nitric oxide withdrawal. Anesthesiology 1999; 91 (1): 307–310.

    Article  CAS  Google Scholar 

  38. Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med 2005; 353 (20): 2148–2157.

    Article  CAS  Google Scholar 

  39. Shekerdemian LS, Ravn HB, Penny DJ . Intravenous sildenafil lowers pulmonary vascular resistance in a model of neonatal pulmonary hypertension. Am J Respir Crit Care Med 2002; 165 (8): 1098–1102.

    Article  Google Scholar 

  40. Ichinose F, Erana-Garcia J, Hromi J, Raveh Y, Jones R, Krim L et al. Nebulized sildenafil is a selective pulmonary vasodilator in lambs with acute pulmonary hypertension. Crit Care Med 2001; 29 (5): 1000–1005.

    Article  CAS  Google Scholar 

  41. Baquero H, Soliz A, Neira F, Venegas ME, Sola A . Oral sildenafil in infants with persistent pulmonary hypertension of the newborn: a pilot randomized blinded study. Pediatrics 2006; 117 (4): 1077–1083.

    Article  Google Scholar 

  42. Deruelle P, Grover TR, Abman SH . Pulmonary vascular effects of nitric oxide–cGMP augmentation in a model of chronic pulmonary hypertension in fetal and neonatal sheep. Am J Physiol Lung Cell Mol Physiol 2005; 289 (5): L798–L806.

    Article  CAS  Google Scholar 

  43. Ivy DD, Doran AK, Smith KJ, Mallory Jr GB, Beghetti M, Barst RJ et al. Short- and long-term effects of inhaled iloprost therapy in children with pulmonary arterial hypertension. J Am Coll Cardiol 2008; 51 (2): 161–169.

    Article  CAS  Google Scholar 

  44. Kelly LK, Porta NF, Goodman DM, Carroll CL, Steinhorn RH . Inhaled prostacyclin for term infants with persistent pulmonary hypertension refractory to inhaled nitric oxide. J Pediatr 2002; 141 (6): 830–832.

    Article  CAS  Google Scholar 

  45. Ivy DD, Parker TA, Ziegler JW, Galan HL, Kinsella JP, Tuder RM et al. Prolonged endothelin A receptor blockade attenuates chronic pulmonary hypertension in the ovine fetus. J Clin Invest 1997; 99 (6): 1179–1186.

    Article  CAS  Google Scholar 

  46. Liu C, Chen J . Endothelin receptor antagonists for pulmonary arterial hypertension. Cochrane Database Syst Rev 2006; 3: CD004434.

    Google Scholar 

  47. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H et al. Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med 2005; 171 (5): 494–499.

    Article  Google Scholar 

  48. Lakshminrusimha S, Russell JA, Wedgwood S, Gugino SF, Kazzaz JA, Davis JM et al. Superoxide dismutase improves oxygenation and reduces oxidation in neonatal pulmonary hypertension. Am J Respir Crit Care Med 2006; 174 (12): 1370–1377.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Schreiber.

Additional information

Duality of interest

Dr Schreiber has received grant support and honoraria from iNO Therapeutics/IKARIA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bin-Nun, A., Schreiber, M. Role of iNO in the modulation of pulmonary vascular resistance. J Perinatol 28 (Suppl 3), S84–S92 (2008). https://doi.org/10.1038/jp.2008.161

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.161

Search

Quick links