Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Intracellular and extracellular serpins modulate lung disease

Abstract

An imbalance between peptidases and their inhibitors leads to pulmonary disease. Imbalances occur in the adult and the neonate at risk for a specific set of lung pathologies. Serpins (serine peptidase inhibitors) make up the major source of antipeptidase activity in the lung. The purpose of this review is to describe the serpin mechanism of inhibition, their roles in the normal and pathological lung and their potential as therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gettins PGW . Serpin structure, mechanism, and function. Chem Rev. 102; 2002; 4751–4804.

    Article  CAS  PubMed  Google Scholar 

  2. Gettins PGW . Mechanisms of serpin inhibition. In: Silverman GA, Lomas DA (eds). Molecular and Cellular Aspects of the Serpinopathies and Disorders in Serpin Activity. World Scientific Publishing: Tuck Link, Singapore, 2007, pp 67–100.

    Chapter  Google Scholar 

  3. Huntington JA, Read RJ, Carrell RW . Structure of a serpin–protease complex shows inhibition by deformation. Nature 2000; 407: 923–926.

    Article  CAS  PubMed  Google Scholar 

  4. Lomas DA, Evans DL, Finch JT, Carrell RW . The mechanism of Z alpha1-antitrypsan accumulation in the liver. Nature 1992; 357: 605–607.

    Article  CAS  PubMed  Google Scholar 

  5. Lomas D . The serpinopathies and respiratory disease. In: Silverman GA, Lomas DA (eds). Molecular and Cellular Aspects of the Serpinopathies and Disorders in Serpin Activity. World Scientific Publishing: Tuck Link, Singapore, 2007, p 639.

    Google Scholar 

  6. Carrell RW, Lomas DA . Alpha1-antitrypsin deficiency—a model for conformational diseases. N Engl J Med 2002; 346: 45–53.

    Article  CAS  PubMed  Google Scholar 

  7. Eriksson S, Carlson J, Velez R . Risk of cirrhosis and primary liver cancer in alpha 1-antitrypsin deficiency. N Engl J Med 1986; 324: 736–739.

    Article  Google Scholar 

  8. Eden E, Mitchell D, Mehlman B, Khouli H, Nejat M, Grieco MH et al. Atopy, asthma, and emphysema in patients with severe alpha-1-antitrypysin deficiency. Am J Respir Crit Care Med 1997; 156: 68–74.

    Article  CAS  PubMed  Google Scholar 

  9. Travis J, Salvesen GS . Human plasma proteinase inhibitors. Annu Rev Biochem 1983; 52: 655–709.

    Article  CAS  PubMed  Google Scholar 

  10. Carrell RW . alpha 1-Antitrypsin: molecular pathology, leukocytes, and tissue damage. J Clin Invest 1986; 78: 1427–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elias JA, Kang MJ, Crouthers K, Homer R, Lee CG . State of the art. mechanistic heterogeneity in chronic obstructive pulmonary disease: insights from transgenic mice. Proc Am Thorac Soc 2006; 3: 494–498.

    Article  CAS  PubMed  Google Scholar 

  12. Elliott PR, Bilton D, Lomas DA . Lung polymers in Z alpha1-antitrypsin deficiency-related emphysema. Am J Respir Cell Mol Biol 1998; 18: 670–675.

    Article  CAS  PubMed  Google Scholar 

  13. Mahadeva R, Atkinson C, Li Z, Stewart S, Janciauskiene S, Kelley DG et al. Polymers of Z alpha1-antitrypsin co-localize with neutrophils in emphysematous alveoli and are chemotactic in vivo. Am J Pathol 2005; 166: 377–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parmar JS, Mahadeva R, Reed BJ, Farahi N, Cadwallader KA, Keogan MT et al. Polymers of alpha(1)-antitrypsin are chemotactic for human neutrophils: a new paradigm for the pathogenesis of emphysema. Am J Respir Cell Mol Biol 2002; 26: 723–730.

    Article  CAS  PubMed  Google Scholar 

  15. Hodges JR, Millward-Sadler GH, Barbatis C, Wright R . Heterozygous MZ alpha 1-antitrypsin deficiency in adults with chronic active hepatitis and cryptogenic cirrhosis. N Engl J Med 1981; 304: 557–560.

    Article  CAS  PubMed  Google Scholar 

  16. National Heart, LaBI. A registry of patients with severe deficiency of alpha1-antitrypsin. Chest 1994; 1223–1232.

  17. Lu Y, Choi YK, Campbell-Thompson M, Li C, Tang Q, Crawford JM et al. Therapeutic level of functional human alpha 1 antitrypsin (hAAT) secreted from murine muscle transduced by adeno-associated virus (rAAV1) vector. J Gene Med 2006; 8: 730–735.

    Article  CAS  PubMed  Google Scholar 

  18. Flotte TR, Conlon TJ, Poirier A, Campbell-Thompson M, Byrne BJ . Preclinical characterization of a recombinant adeno-associated virus type 1-pseudotyped vector demonstrates dose-dependent injection site inflammation and dissemination of vector genomes to distant sites. Hum Gene Ther 2007; 18: 245–256.

    Article  CAS  PubMed  Google Scholar 

  19. Chughtai B, O'Riordan TG . Potential role of inhibitors of neutrophil elastase in treating diseases of the airway. J Aerosol Med 2004; 17: 289–298.

    Article  CAS  PubMed  Google Scholar 

  20. Schmidt BZ, Perlmutter DH . Grp78, Grp94, and Grp170 interact with alpha1-antitrypsin mutants that are retained in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 2005; 289: G444–G455.

    Article  CAS  PubMed  Google Scholar 

  21. Burrows JA, Willis LK, Perlmutter DH . Chemical chaperones mediate increased secretion of mutant alpha 1-antitrypsin (alpha 1-AT) Z: a potential pharmacological strategy for prevention of liver injury and emphysema in alpha 1-AT deficiency. Proc Natl Acad Sci USA 2000; 97: 1796–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teckman JH . Lack of effect of oral 4-phenylbutyrate on serum alpha-1-antitrypsin in patients with alpha-1-antitrypsin deficiency: a preliminary study. J Pediatr Gastroenterol Nutr 2004; 39: 34–37.

    Article  CAS  PubMed  Google Scholar 

  23. Goss CH, Burns JL . Exacerbations in cystic fibrosis. 1: epidemiology and pathogenesis. [see comment]. Thorax 2007; 62: 360–367.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brennan S . Revisiting alpha1-antitrypsin therapy in cystic fibrosis: can it still offer promise? [comment]. Eur Respir J 2007; 29: 229–230.

    Article  CAS  PubMed  Google Scholar 

  25. McElvaney NG, Hubbard RC, Birrer P, Chernick MS, Caplan DB, Frank MM et al. Aerosol alpha 1-antitrypsin treatment for cystic fibrosis. Lancet 1991; 337: 392–394.

    Article  CAS  PubMed  Google Scholar 

  26. Griese M, Latzin P, Kappler M, Weckerle K, Heinzlmaier T, Bernhardt T et al. alpha1-Antitrypsin inhalation reduces airway inflammation in cystic fibrosis patients. [see comment]. Eur Respir J 2007; 29: 240–250.

    Article  CAS  PubMed  Google Scholar 

  27. Martin SL, Downey D, Bilton D, Keogan MT, Edgar J, Elborn JS et al. Safety and efficacy of recombinant alpha(1)-antitrypsin therapy in cystic fibrosis. Pediatr Pulmonol 2006; 41: 177–183.

    Article  PubMed  Google Scholar 

  28. Cantin AM, Woods DE . Aerosolized prolastin suppresses bacterial proliferation in a model of chronic Pseudomonas aeruginosa lung infection. Am J Respir Crit Care Med 1999; 160: 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  29. Jobe AH, Ikegami M . Prevention of bronchopulmonary dysplasia. Curr Opin Pediatr 2001; 13: 124–129.

    Article  CAS  PubMed  Google Scholar 

  30. Chess PR, D'Angio CT, Pryhuber GS, Maniscalco WM . Pathogenesis of bronchopulmonary dysplasia. Semin Perinatol 2006; 30: 171–178.

    Article  PubMed  Google Scholar 

  31. Merritt TA, Cochrane CG, Holcomb K, Bohl B, Hallman M, Strayer D et al. Elastase and alpha 1-proteinase inhibitor activity in tracheal aspirates during respiratory distress syndrome. Role of inflammation in the pathogenesis of bronchopulmonary dysplasia. J Clin Invest 1983; 72: 656–666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Speer CP . Inflammation and bronchopulmonary dysplasia. Semin Neonatol 2003; 8: 29–38.

    Article  PubMed  Google Scholar 

  33. Sluis KB, Darlow BA, Vissers MC, Winterbourn CC . Proteinase–antiproteinase balance in tracheal aspirates from neonates. Eur Respir J 1994; 7: 251–259.

    Article  CAS  PubMed  Google Scholar 

  34. Watterberg KL, Carmichael DF, Gerdes JS, Werner S, Backstrom C, Murphy S . Secretory leukocyte protease inhibitor and lung inflammation in developing bronchopulmonary dysplasia. J Pediatr 1994; 125: 264–269.

    Article  CAS  PubMed  Google Scholar 

  35. Sveger T, Ohlsson K, Polberger S, Noack G, Morse H, Laurin S . Tracheobronchial aspirate fluid neutrophil lipocalin, elastase- and neutrophil protease-4-alpha1-antitrypsin complexes, protease inhibitors and free proteolytic activity in respiratory distress syndrome. Acta Paediatr 2002; 91: 934–937.

    Article  CAS  PubMed  Google Scholar 

  36. Dunn MS, Stiskal JA, O'Brien KK, Ito S, Cox DW, Kelly EN . alpha1-Proteinase inhibitor (A1PI) therapy for the prevention of chronic lung disease (CLD) of prematurity—a dose ranging study and meta-analysis with previous randomized clinical trial (RCT) (Abstract). Pediatr Res 2000; 47: 397A.

    Google Scholar 

  37. Stiskal JA, Dunn MS, Shennan AT, O'Brien KK, Kelly EN, Koppel RI et al. alpha1-Proteinase inhibitor therapy for the prevention of chronic lung disease of prematurity: a randomized, controlled trial. Pediatrics 1998; 101: 89–94.

    Article  CAS  PubMed  Google Scholar 

  38. Shah P, Ohlsson A . Alpha-1 proteinase inhibitor (a1PI) for preventing chronic lung disease in preterm infants. Cochrane Database Syst Rev 2001 CD002775.

  39. Zagariya A, Bhat R, Uhal B, Navale S, Freidine M, Vidyasagar D . Cell death and lung cell histology in meconium aspirated newborn rabbit lung. Eur J Pediatr 2000; 159: 819–826.

    Article  CAS  PubMed  Google Scholar 

  40. Zagariya A, Bhat R, Chari G, Uhal B, Navale S, Vidyasagar D . Apoptosis of airway epithelial cells in response to meconium. Life Sci 2005; 76: 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  41. Holopainen R, Aho H, Laine J, Peuravuori H, Soukka H, Kaapa P . Human meconium has high phospholipase A2 activity and induces cellular injury and apoptosis in piglet lungs. Pediatr Res 1999; 46: 626–632.

    Article  CAS  PubMed  Google Scholar 

  42. Holopainen R, Soukka H, Halkola L, Kaapa P . Meconium aspiration induces a concentration-dependent pulmonary hypertensive response in newborn piglets. Pediatr Pulmonol 1998; 25: 107–113.

    Article  CAS  PubMed  Google Scholar 

  43. Zagariya AM, Bhat R, Zhabotynsky E, Chari G, Navale S, Xu Q et al. Characterization of serine/cysteine protease inhibitor alpha1-antitrypsin from meconium-instilled rabbit lungs. J Cell Biochem 2005; 96: 137–144.

    Article  CAS  PubMed  Google Scholar 

  44. Ware LB, Matthay MA . Clinical practice. Acute pulmonary edema. N Engl J Med 2005; 353: 2788–2796.

    Article  CAS  PubMed  Google Scholar 

  45. Kotani I, Sato A, Hayakawa H, Urano T, Takada Y, Takada A . Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb Res 1995; 77: 493–504.

    Article  CAS  PubMed  Google Scholar 

  46. Chapman HA, Yang XL, Sailor LZ, Sugarbaker DJ . Developmental expression of plasminogen activator inhibitor type 1 by human alveolar macrophages. Possible role in lung injury. J Immunol 1990; 145: 3398–3405.

    CAS  PubMed  Google Scholar 

  47. Cederqvist K, Siren V, Petaja J, Vaheri A, Haglund C, Andersson S . High concentrations of plasminogen activator inhibitor-1 in lungs of preterm infants with respiratory distress syndrome. Pediatrics 2006; 117: 1226–1234.

    Article  PubMed  Google Scholar 

  48. Choi G, Schultz MJ, van Till JW, Bresser P, van der Zee JS, Boermeester MA et al. Disturbed alveolar fibrin turnover during pneumonia is restricted to the site of infection. Eur Respir J 2004; 24: 786–789.

    Article  CAS  PubMed  Google Scholar 

  49. El-Solh AA, Okada M, Pietrantoni C, Aquilina A, Berbary E . Procoagulant and fibrinolytic activity in ventilator-associated pneumonia: impact of inadequate antimicrobial therapy. Intensive Care Med 2004; 30: 1914–1920.

    Article  PubMed  Google Scholar 

  50. Gunther A, Mosavi P, Heinemann S, Ruppert C, Muth H, Markart P et al. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med 2000; 161: 454–462.

    Article  CAS  PubMed  Google Scholar 

  51. Wygrecka M, Markart P, Ruppert C, Kuchenbuch T, Fink L, Bohle RM et al. Compartment- and cell-specific expression of coagulation and fibrinolysis factors in the murine lung undergoing inhalational versus intravenous endotoxin application. [see comment]. Thromb Haemost 2004; 92: 529–540.

    Article  CAS  PubMed  Google Scholar 

  52. Wygrecka M, Markart P, Ruppert C, Petri K, Preissner KT, Seeger W et al. Cellular origin of procoagulant and (anti)-fibrinolytic factors in bleomycin-injured lungs. Eur Respir J 2007; 29 (6): 1105–1114.

    Article  CAS  PubMed  Google Scholar 

  53. Rijneveld AW, Florquin S, Bresser P, Levi M, De Waard V, Lijnen R et al. Plasminogen activator inhibitor type-1 deficiency does not influence the outcome of murine pneumococcal pneumonia. Blood 2003; 102: 934–939.

    Article  CAS  PubMed  Google Scholar 

  54. Renckens R, Roelofs JJ, Bonta PI, Florquin S, de Vries CJ, Levi M et al. Plasminogen activator inhibitor type 1 is protective during severe Gram-negative pneumonia. Blood 2007; 109: 1593–1601.

    Article  CAS  PubMed  Google Scholar 

  55. Kwak SH, Wang XQ, He Q, Fang WF, Mitra S, Bdeir K et al. Plasminogen activator inhibitor-1 potentiates LPS-induced neutrophil activation through a JNK-mediated pathway. Thromb Haemost 2006; 95: 829–835.

    Article  CAS  PubMed  Google Scholar 

  56. Church F, Pike RN, Tollefsen DM, Buckle AM, Ciaccia AV, Olson ST . Regulation of hemostasis by heparin-binding serpins. In: Silverman GA, Lomas DA (eds). Molecular and Cellular Aspects of the Serpinopathies and Disorders in Serpin Activity. World Scientific Publishing: Tuck Link, Singapore, 2007, pp 509–554.

    Chapter  Google Scholar 

  57. Quinsey NS, Greedy AL, Bottomley SP, Whisstock JC, Pike RN . Antithrombin: in control of coagulation. Int J Biochem Cell Biol 2004; 36: 386–389.

    Article  CAS  PubMed  Google Scholar 

  58. Uchiba M, Okajima K, Murakami K . Effects of various doses of antithrombin III on endotoxin-induced endothelial cell injury and coagulation abnormalities in rats. Thromb Res 1998; 89: 233–241.

    Article  CAS  PubMed  Google Scholar 

  59. Salvatierra A, Guerrero R, Rodriguez M, Alvarez A, Soriano F, Lopez-Pedrera R et al. Antithrombin III prevents early pulmonary dysfunction after lung transplantation in the dog. Circulation 2001; 104: 2975–2980.

    Article  CAS  PubMed  Google Scholar 

  60. Fourrier F, Chopin C, Goudemand J, Hendrycx S, Caron C, Rime A et al. Septic shock, multiple organ failure, and disseminated intravascular coagulation. Compared patterns of antithrombin III, protein C, and protein S deficiencies. [see comment]. Chest 1992; 101: 816–823.

    Article  CAS  PubMed  Google Scholar 

  61. Fourrier F, Jallot A, Leclerc L, Jourdain M, Racadot A, Chagnon JL et al. Sex steroid hormones in circulatory shock, sepsis syndrome, and septic shock. Circ Shock 1994; 43: 171–178.

    CAS  PubMed  Google Scholar 

  62. Eisele B, Lamy M, Thijs LG, Keinecke HO, Schuster HP, Matthias FR et al. Antithrombin III in patients with severe sepsis. A randomized, placebo-controlled, double-blind multicenter trial plus a meta-analysis on all randomized, placebo-controlled, double-blind trials with antithrombin III in severe sepsis. [see comment]. Intensive Care Med 1998; 24: 663–672.

    Article  CAS  PubMed  Google Scholar 

  63. Waydhas C, Nast-Kolb D, Gippner-Steppert C, Trupka A, Pfundstein C, Schweiberer L et al. High-dose antithrombin III treatment of severely injured patients: results of a prospective study. J Trauma 1998; 45: 931–940.

    Article  CAS  PubMed  Google Scholar 

  64. Baudo F, Caimi TM, de Cataldo F, Ravizza A, Arlati S, Casella G et al. Antithrombin III (ATIII) replacement therapy in patients with sepsis and/or postsurgical complications: a controlled double-blind, randomized, multicenter study. [see comment]. Intensive Care Med 1998; 24: 336–342.

    Article  CAS  PubMed  Google Scholar 

  65. Warren BL, Eid A, Singer P, Pillay SS, Carl P, Novak I et al. Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. [see comment][erratum appears in JAMA 2002 Jan 9;287(2):192]. JAMA 2001; 286: 1869–1878.

    Article  CAS  PubMed  Google Scholar 

  66. Geiger M . Protein C inhibitor, a serpin with functions in- and outside vascular biology. Thromb Haemost 2007; 97: 343–347.

    Article  CAS  PubMed  Google Scholar 

  67. Rezaie AR, Cooper ST, Church FC, Esmon CT . Protein C inhibitor is a potent inhibitor of the thrombin–thrombomodulin complex. J Biol Chem 1995; 270: 25336–25339.

    Article  CAS  PubMed  Google Scholar 

  68. Pratt CW, Church FC . Heparin binding to protein C inhibitor. J Biol Chem 1992; 267: 8789–8794.

    CAS  PubMed  Google Scholar 

  69. Ecke S, Geiger M, Binder BR . Glycosaminoglycans regulate the enzyme specificity of protein C inhibitor. Ann NY Acad Sci 1992; 667: 84–86.

    Article  CAS  PubMed  Google Scholar 

  70. Pike RN, Buckle AM, le Bonniec BF, Church FC . Control of the coagulation system by serpins. Getting by with a little help from glycosaminoglycans. FEBS J 2005; 272: 4842–4851.

    Article  CAS  PubMed  Google Scholar 

  71. Laurell M, Stenflo J, Carlson TH . Turnover of *I-protein C inhibitor and *I-alpha 1-antitrypsin and their complexes with activated protein C. Blood 1990; 76: 2290–2295.

    CAS  PubMed  Google Scholar 

  72. Uhrin P, Dewerchin M, Hilpert M, Chrenek P, Schofer C, Zechmeister-Machhart M et al. Disruption of the protein C inhibitor gene results in impaired spermatogenesis and male infertility. J Clin Invest 2000; 106: 1531–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hayashi T, Nishioka J, Kamada H, Asanuma K, Kondo H, Gabazza EC et al. Characterization of a novel human protein C inhibitor (PCI) gene transgenic mouse useful for studying the role of PCI in physiological and pathological conditions. J Thromb Haemost 2004; 2: 949–961.

    Article  CAS  PubMed  Google Scholar 

  74. Nishii Y, Gabazza EC, Fujimoto H, Nakahara H, Takagi T, Bruno N et al. Protective role of protein C inhibitor in monocrotaline-induced pulmonary hypertension. [see comment]. J Thromb Haemost 2006; 4: 2331–2339.

    Article  CAS  PubMed  Google Scholar 

  75. Beaulieu LM, Church FC . Is protein C inhibitor antithrombotic and protective in pulmonary hypertension? [comment]. J Thromb Haemost 2006; 4: 2327–2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fujimoto H, Gabazza EC, Hataji O, Yuda H, D'Alessandro-Gabazza CN, Nakano M et al. Thrombin-activatable fibrinolysis inhibitor and protein C inhibitor in interstitial lung disease. [see comment]. Am J Respir Crit Care Med 2003; 167: 1687–1694.

    Article  PubMed  Google Scholar 

  77. Mosnier LO, Elisen MG, Bouma BN, Meijers JC . Protein C inhibitor regulates the thrombin–thrombomodulin complex in the up- and down regulation of TAFI activation. Thromb Haemost 2001; 86: 1057–1064.

    Article  CAS  PubMed  Google Scholar 

  78. Silverman GA, Whisstock JC, Askew DJ, Pak SC, Luke CJ, Cataltepe S et al. Human clade B serpins (ov-serpins) belong to a cohort of evolutionarily dispersed intracellular proteinase inhibitor clades that protect cells from promiscuous proteolysis. Cell Mol Life Sci 2004; 61: 301–325.

    Article  CAS  PubMed  Google Scholar 

  79. Scott FL . Serpins, apoptosis and other aspects of cell death. In: Silverman, GA, Lomas DA (eds). Molecular and Cellular Aspects of the Serpinopathies and Disorders in Serpin Activity. World Scientific Publishing: Tuck Link, Singapore, 2007, pp 301–336.

    Chapter  Google Scholar 

  80. Remold-O'Donnell E . A fast-acting elastase inhibitor in human monocytes. J Exp Med 1985; 162: 2142–2155.

    Article  CAS  PubMed  Google Scholar 

  81. Suminami Y, Nagashima S, Vujanovic NL, Hirabayashi K, Kato H, Whiteside TL . Inhibition of apoptosis in human tumour cells by the tumour-associated serpin, SCC antigen-1. Br J Cancer 2000; 82: 981–989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Murakami A, Suminami Y, Hirakawa H, Nawata S, Numa F, Kato H . Squamous cell carcinoma antigen suppresses radiation-induced cell death. Br J Cancer 2001; 84: 851–858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Scott FL, Hirst CE, Sun J, Bird CH, Bottomley SP, Bird PI . The intracellular serpin proteinase inhibitor 6 is expressed in monocytes and granulocytes and is a potent inhibitor of the azurophilic granule protease, cathepsin G. Blood 1999; 93: 2089–2097.

    CAS  PubMed  Google Scholar 

  84. Sun J, Bird CH, Sutton V, McDonald L, Coughlin PB, De Jong TA et al. A cytosolic granzyme B inhibitor related to the viral apoptotic regulator cytokine response modifier A is present in cytotoxic lymphocytes. J Biol Chem 1996; 271: 27802–27809.

    Article  CAS  PubMed  Google Scholar 

  85. Askew YS, Pak SC, Luke CJ, Askew DJ, Cataltepe S, Mills DR et al. SERPINB12 is a novel member of the human ov-serpin family that is widely expressed and inhibits trypsin-like serine proteinases. J Biol Chem 2001; 276: 49320–49330.

    Article  CAS  PubMed  Google Scholar 

  86. Cooley J, Takayama TK, Shapiro SD, Schechter NM, Remold-O'Donnell E . The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry 2001; 40: 15762–15770.

    Article  CAS  PubMed  Google Scholar 

  87. Cooley JRF, Sontag MK, Osberg I, Accurso FJ, Remold-O'Donnell E . MNEI (monocyte/neutrophil elastase inhibitor) is found at increased levels in cystic fibrosis lavage fluid (Abstract). Pediatr Pulmonol 2001; 227.

  88. Rees DD, Rogers RA, Cooley J, Mandle RJ, Kenney DM, Remold-O'Donnell E . Recombinant human monocyte/neutrophil elastase inhibitor protects rat lungs against injury from cystic fibrosis airway secretions. Am J Respir Cell Mol Biol 1999; 20: 69–78.

    Article  CAS  PubMed  Google Scholar 

  89. Rubio F, Cooley J, Accurso FJ, Remold-O'Donnell E . Linkage of neutrophil serine proteases and decreased surfactant protein-A (SP-A) levels in inflammatory lung disease. Thorax 2004; 59: 318–323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yasumatsu R, Altiok O, Benarafa C, Yasumatsu C, Bingol-Karakoc G, Remold-O'Donnell E et al. SERPINB1 upregulation is associated with in vivo complex formation with neutrophil elastase and cathepsin G in a baboon model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2006; 291: L619–L627.

    Article  CAS  PubMed  Google Scholar 

  91. Coalson JJ, Winter VT, Siler-Khodr T, Yoder BA . Neonatal chronic lung disease in extremely immature baboons. Am J Respir Crit Care Med 1999; 160: 1333–1346.

    Article  CAS  PubMed  Google Scholar 

  92. Zeng W, Remold-O'Donnell E . Human monocyte/neutrophil elastase inhibitor (MNEI) is regulated by PU.1/Spi-1, Sp1, and NF-kappaB. J Cell Biochem 2000; 78: 519–532.

    Article  CAS  PubMed  Google Scholar 

  93. Medcalf RL, Stasinopoulos SJ . The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. FEBS J 2005; 272: 4858–4867.

    Article  CAS  PubMed  Google Scholar 

  94. Kumar S, Baglioni C . Protection from tumor necrosis factor-mediated cytolysis by overexpression of plasminogen activator inhibitor type-2. J Biol Chem 1991; 266: 20960–20964.

    CAS  PubMed  Google Scholar 

  95. Dickinson JL, Bates EJ, Ferrante A, Antalis TM . Plasminogen activator inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an alternate biological function. J Biol Chem 1995; 270: 27894–27904.

    Article  CAS  PubMed  Google Scholar 

  96. Park JM, Greten FR, Wong A, Westrick RJ, Arthur JS, Otsu K et al. Signaling pathways and genes that inhibit pathogen-induced macrophage apoptosis—CREB and NF-kappaB as key regulators. Immunity 2005; 23: 319–329.

    Article  CAS  PubMed  Google Scholar 

  97. Cataltepe S, Gornstein ER, Schick C, Kamachi Y, Chatson K, Fries J et al. Co-expression of the squamous cell carcinoma antigens 1 and 2 in normal adult human tissues and squamous cell carcinomas. J Histochem Cytochem 2000; 48: 113–122.

    Article  CAS  PubMed  Google Scholar 

  98. Schick C, Pemberton PA, Shi GP, Kamachi Y, Cataltepe S, Bartuski AJ et al. Cross-class inhibition of the cysteine proteinases cathepsins K, L, and S by the serpin squamous cell carcinoma antigen 1: a kinetic analysis. Biochemistry 1998; 37: 5258–5266.

    Article  CAS  PubMed  Google Scholar 

  99. Schick C, Kamachi Y, Bartuski AJ, Cataltepe S, Schechter NM, Pemberton PA et al. Squamous cell carcinoma antigen 2 is a novel serpin that inhibits the chymotrypsin-like proteinases cathepsin G and mast cell chymase. J Biol Chem 1997; 272: 1849–1855.

    Article  CAS  PubMed  Google Scholar 

  100. Yuyama N, Davies DE, Akaiwa M, Matsui K, Hamasaki Y, Suminami Y et al. Analysis of novel disease-related genes in bronchial asthma. Cytokine 2002; 19: 287–296.

    Article  CAS  PubMed  Google Scholar 

  101. Lockshin RA, Zakeri Z . Caspase-independent cell deaths. Curr Opin Cell Biol 2002; 14: 727–733.

    Article  CAS  PubMed  Google Scholar 

  102. Guicciardi ME, Leist M, Gores GJ . Lysosomes in cell death. Oncogene 2004; 23: 2881–2890.

    Article  CAS  PubMed  Google Scholar 

  103. Altiok O, Yasumatsu R, Bingol-Karakoc G, Riese RJ, Stahlman MT, Dwyer W et al. Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am J Respir Crit Care Med 2006; 173: 318–326.

    Article  CAS  PubMed  Google Scholar 

  104. Phillips T, Opferman JT, Shah R, Liu N, Froelich CJ, Ashton-Rickardt PG . A role for the granzyme B inhibitor serine protease inhibitor 6 in CD8+ memory cell homeostasis. J Immunol 2004; 173: 3801–3809.

    Article  CAS  PubMed  Google Scholar 

  105. Medema JP, Schuurhuis DH, Rea D, van Tongeren J, de Jong J, Bres SA et al. Expression of the serpin serine protease inhibitor 6 protects dendritic cells from cytotoxic T lymphocyte-induced apoptosis: differential modulation by T helper type 1 and type 2 cells. [see comment]. J Exp Med 2001; 194: 657–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang M, Park SM, Wang Y, Shah R, Liu N, Murmann AE et al. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 2006; 24: 451–461.

    Article  CAS  PubMed  Google Scholar 

  107. Bladergroen BA, Strik MC, Bovenschen N, van Berkum O, Scheffer GL, Meijer CJ et al. The granzyme B inhibitor, protease inhibitor 9, is mainly expressed by dendritic cells and at immune-privileged sites. J Immunol 2001; 166: 3218–3225.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D J Askew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Askew, D., Silverman, G. Intracellular and extracellular serpins modulate lung disease. J Perinatol 28 (Suppl 3), S127–S135 (2008). https://doi.org/10.1038/jp.2008.150

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jp.2008.150

This article is cited by

Search

Quick links