Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Average real variability of 24-h systolic blood pressure is associated with microalbuminuria in patients with primary hypertension

Subjects

Abstract

Limited and conflicting data are available about the association between short-term blood pressure (BP) variability and urinary albumin excretion rate (uAER). The objective of our study was to analyze the relationships between microalbuminuria (MAU), defined as an uAER between 20 and 200 μg min−1, and short-term BP variability (BPV), assessed as average real variability (ARV), weighted s.d. of 24-h BP and as s.d. of daytime and night-time BP. The study population consisted of 315 untreated essential hypertensives with normal estimated glomerular filtration rate (>60 ml min−1 per 1.73 m2), who underwent 24-h ambulatory BP monitoring and 24-h uAER determination. MAU was detected in 82 (26%) patients. ARV of 24-h systolic BP (SBP) was significantly higher in patients with MAU (9.8 (8.5–11.1) mm Hg) when compared with those without it (9.1 (8–10.2) mm Hg; P=0.007). This difference held (P=0.026) after adjustment for age, mean levels of BP and other potential confounders by analysis of covariance. A statistically significant correlation was also found between ARV of 24-h SBP and uAER (r=0.17; P=0.003). This association remained significant (β=0.15; P=0.01), also taking into account the effect of 24-h average systolic and diastolic BP, age, gender, diabetes, serum uric acid, triglycerides, estimated glomerular filtration rate in multiple regression analyses. All the other indices of short-term BPV tested were not independently associated with MAU. Our results seem to suggest that in essential hypertension, short-term BPV, only when estimated by ARV of 24-h SBP, is independently associated with MAU.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bhöm M et alTask Force Members. 2013 ESH/ESC Guidelines for the Management of Arterial Hypertension. The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31: 1281–1357.

    Article  CAS  Google Scholar 

  2. Mancia G . Short- and long-term blood pressure variability. Present and future. Hypertension 2012; 60: 512–517.

    Article  CAS  Google Scholar 

  3. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G . Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens 1987; 5: 93–98.

    Article  CAS  Google Scholar 

  4. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G . Prognostic value of 24-hour blood pressure variability. J Hypertens 1993; 11: 1133–1137.

    Article  CAS  Google Scholar 

  5. Sasaki S, Yoneda Y, Fujita H, Uchida A, Takenaka K, Takesako T et al. Association of blood pressure variability with induction of atherosclerosis in cholesterol-fed rats. Am J Hypertens 1994; 7: 453–459.

    Article  CAS  Google Scholar 

  6. Su DF, Miao CY . Blood pressure variability and organ damage. Clin Exp Pharmacol Physiol 2001; 28: 709–715.

    Article  CAS  Google Scholar 

  7. Miao CY, Su DF . The importance of blood pressure variability in rat aortic and left ventricular hypertrophy produced by sinoaortic denervation. J Hypertens 2002; 20: 1865–1872.

    Article  CAS  Google Scholar 

  8. Miao CY, Xie HH, Zhan LS, Su DF . Blood pressure variability is more important than blood pressure level in determination of end-organ damage in rats. J Hypertens 2006; 24: 1125–1135.

    Article  CAS  Google Scholar 

  9. Palatini P, Penzo M, Racioppa A, Zugno E, Guzzardi G, Anaclerio M et al. Clinical relevance of nighttime blood pressure and of daytime blood pressure variability. Arch Intern Med 1992; 152: 1855–1860.

    Article  CAS  Google Scholar 

  10. Mancia G, Parati G, Hennig M, Flatau B, Omboni S, Glavina F et al. ELSA Investigators. Relation between blood pressure variability and carotid artery damage in hypertension: baseline data from the European Lacidipine Study on Atherosclerosis (ELSA). J Hypertens 2001; 19: 1981–1989.

    Article  CAS  Google Scholar 

  11. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G et al. Blood pressure variability and organ damage in a general population: results from the PAMELA Study (Pressioni Arteriose Monitorate e Loro Associazioni). Hypertension 2002; 39: 710–714.

    Article  CAS  Google Scholar 

  12. Bilo G, Giglio A, Styczkiewicz K, Caldara G, Maronati A, Kawecka-Jaszcz K et al. A new method for assessing 24 h blood pressure variability after excluding the contribution of nocturnal blood pressure fall. J Hypertens 2007; 25: 2058–2066.

    Article  CAS  Google Scholar 

  13. Tatasciore A, Renda G, Zimarino M, Soccio M, Bilo G, Parati G et al. Awake systolic blood pressure variability correlates with target-organ damage in hypertensive subjects. Hypertension 2007; 50: 325–332.

    Article  CAS  Google Scholar 

  14. Leoncini G, Viazzi F, Storace G, Deferrari G, Pontremoli R . Blood pressure variability and multiple organ damage in primary hypertension. J Hum Hypertens 2013; 27: 663–670.

    Article  CAS  Google Scholar 

  15. Schillaci G, Bilo G, Pucci G, Laurent S, Macquin-Mavier I, Boutouyrie P et al. Relationship between short-term blood pressure variability and large-artery stiffness in human hypertension: findings from 2 large databases. Hypertension 2012; 60: 369–377.

    Article  CAS  Google Scholar 

  16. Ichihara A, Kaneshiro Y, Takemitsu T, Sakoda M, Hayashi M . Ambulatory blood pressure variability and brachial-ankle pulse wave velocity in untreated hypertensive patients. J Hum Hypertens 2006; 20: 529–536.

    Article  CAS  Google Scholar 

  17. Kikuya M, Hozawa A, Ohkubo T, Tsuji I, Michimata M, Matsubara M et al. Prognostic of blood pressure and heart rate variabilities: the Osahama Study. Hypertension 2000; 36: 901–906.

    Article  CAS  Google Scholar 

  18. Sander D, Kukla C, Klingelhofer J, Winbeck K, Conrad B . Relationship between circadian blood pressure patterns and progression of early carotid atherosclerosis: a 3-year follow-up study. Circulation 2000; 102: 1536–1541.

    Article  CAS  Google Scholar 

  19. Pringle E, Phillips C, Thijs L, Davidson C, Staessen JA, de Leeuw PW et al. on behalf of the Syst-Eur investigators. Systolic blood pressure variability as a risk factor for stroke and cardiovascular mortality in the elderly hypertensive population. J Hypertens 2003; 21: 2251–2257.

    Article  CAS  Google Scholar 

  20. Björklund K, Lind L, Zethelius B, Berglund L, Lithell H . Prognostic significance of 24-h ambulatory blood pressure characteristics for cardiovascular morbidity in a population of elderly men. J Hypertens 2004; 22: 1691–1697.

    Article  Google Scholar 

  21. Mena L, Pintos S, Queipo NV, Aizpúrua JA, Maestre G, Sulbarán T . A reliable index for the prognostic significance of blood pressure variability. J Hypertens 2005; 23: 505–511.

    Article  CAS  Google Scholar 

  22. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension 2007; 49: 1265–1270.

    Article  CAS  Google Scholar 

  23. Gavish B, Ben-Dov IZ, Kark JD, Mekler J, Bursztyn M . The association of a simple blood pressure-independent parameter derived from ambulatory blood pressure variability with short-term mortality. Hypertens Res 2009; 32: 488–495.

    Article  Google Scholar 

  24. Pierdomenico SD, Di Nicola M, Esposito AL, Di Mascio R, Ballone E, Lapenna D et al. Prognostic value of different indices of blood pressure variability in hypertensive patients. Am J Hypertens 2009; 22: 842–847.

    Article  Google Scholar 

  25. Stolarz-Skrzypek K, Thijs L, Richart T, Li Y, Hansen TW, Boggia J et al. Blood pressure variability in relation to outcome in the International Database of Ambulatory Blood Pressure in relation to cardiovascular outcome. Hypertens Res 2010; 33: 757–766.

    Article  Google Scholar 

  26. Palatini P, Reboldi G, Beilin LJ, Casiglia E, Eguchi K, Imai Y et al. Added predictive value of night-time blood pressure variability for cardiovascular events and mortality: the Ambulatory Blood Pressure-International Study. Hypertension 2014; 64: 487–493.

    Article  CAS  Google Scholar 

  27. Schillaci G, Verdecchia P, Borgioni C, Ciucci A, Porcellati C . Lack of association between blood pressure variability and left ventricular mass in essential hypertension. Am J Hypertens 1998; 11: 515–522.

    Article  CAS  Google Scholar 

  28. Kristensen KS, Hoegholm A, Bang LE, Gustavsen PH, Puolsen CB . No impact of blood pressure variability on MAU and left ventricular geometry: analysis of daytime variations, diurnal variation and white-coat effect. Blood Press Monit 2001; 6: 125–131.

    Article  CAS  Google Scholar 

  29. Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG et al. Beat-to-beat reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension 2014; 63: 790–796.

    Article  CAS  Google Scholar 

  30. Pierdomenico SD, Lapenna D, Di Tommaso R, Di Carlo S, Esposito AL, Di Mascio R et al. Blood pressure variability and cardiovascular risk in treated hypertensive patients. Am J Hypertens 2006; 19: 991–997.

    Article  Google Scholar 

  31. Verdecchia P, Angeli F, Gattobigio R, Rapicetta C, Reboldi G . Impact of blood pressure variability on cardiac and cerebrovascular complications in hypertension. Am J Hypertens 2007; 20: 154–161.

    Article  Google Scholar 

  32. Cottone S, Mulè G, Nardi E, Lorito MC, Guarneri M, Arsena R et al. Microalbuminuria and early endothelial activation in essential hypertension. J Hum Hypertens 2007; 21: 167–172.

    Article  CAS  Google Scholar 

  33. Cerasola G, Cottone S, Mulè G . The progressive pathway of microalbuminuria: from early marker of renal damage to strong cardiovascular risk predictor. J Hypertens 2010; 28: 2357–2369.

    CAS  PubMed  Google Scholar 

  34. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al. CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.

    Article  Google Scholar 

  35. Di Rienzo M, Grassi G, Pedotti A, Mancia G . Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension 1983; 5: 264–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by a grant of the Italian Ministry for University and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Mulè.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulè, G., Calcaterra, I., Costanzo, M. et al. Average real variability of 24-h systolic blood pressure is associated with microalbuminuria in patients with primary hypertension. J Hum Hypertens 30, 164–170 (2016). https://doi.org/10.1038/jhh.2015.66

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2015.66

This article is cited by

Search

Quick links