Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke

Abstract

Hypertension is one of the most important risk and modifiable factors for stroke. Crucial in managing the cerebrovascular damage caused by long-lasting and inadequately treated hypertension is not only lowering arterial blood pressure but also early predicting subtypes of hypertension-related stroke and applying more effective interventions. Accumulating evidence suggested that circulating microRNAs (miRNAs) could be developed as biomarkers for early recognition of the onset of a variety of diseases. The role of miRNAs has been extensively reviewed, involving cardiac hypertrophy, hypertensive heart failure, kidney failure and renal fibrosis. miRNA research in stroke is still in its infancy, although there are few literatures reviewing the role of miRNAs in the processes of hypertension-related stroke. This review summarizes current advances in miRNAs regulation of critical pathogenic process underlying hypertension, ischemic stroke and hemorrhagic stroke, and highlights the potential of using circulating miRNAs as noninvasive biomarkers for the early detection of hypertension-related stroke.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liu M, Wu B, Wang WZ, Lee LM, Zhang SH, Kong LZ . Stroke in China: epidemiology, prevention, and management strategies. Lancet Neurol 2007; 6 (5): 456–464.

    Article  PubMed  Google Scholar 

  2. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 2012; 125 (1): 188–197.

    Article  PubMed  Google Scholar 

  3. Cerrato P, Grasso M, Imperiale D, Priano L, Baima C, Giraudo M et al. Stroke in young patients: etiopathogenesis and risk factors in different age classes. Cerebrovasc Dis 2004; 18 (2): 154–159.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116 (2): 281–297.

    Article  CAS  PubMed  Google Scholar 

  5. Gan CS, Wang CW, Tan KS . Circulatory microRNA-145 expression is increased in cerebral ischemia. Genet Mol Res 2012; 11 (1): 147–152.

    Article  CAS  PubMed  Google Scholar 

  6. Yang X, Liang L, Zhang XF, Jia HL, Qin Y, Zhu XC et al. MicroRNA-26a suppresses tumor growth and metastasis of human hepatocellular carcinoma by targeting IL-6-Stat3 pathway. Hepatology 2013; 58 (1): 158–170.

    Article  CAS  PubMed  Google Scholar 

  7. Yang H, Fang F, Chang R, Yang L . MicroRNA-140-5p suppresses tumor growth and metastasis by targeting TGFBR1 and FGF9 in hepatocellular carcinoma. Hepatology 2013; 58 (1): 205–217.

    Article  CAS  PubMed  Google Scholar 

  8. Wang GK, Zhu JQ, Zhang JT, Li Q, Li Y, He J et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31 (6): 659–666.

    Article  PubMed  Google Scholar 

  9. Nagalingam RS, Sundaresan NR, Gupta MP, Geenen D, Solaro RJ, Gupta M . A cardiac enriched microRNA, miR-378 blocks cardiac hypertrophy by targeting Ras-signaling. J Biol Chem 2013; 288 (16): 11216–11232.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Dickinson BA, Semus HM, Montgomery RL, Stack C, Latimer PA, Lewton SM et al. Plasma microRNAs serve as biomarkers of therapeutic efficacy and disease progression in hypertension-induced heart failure. Eur J Heart Fail 2013; 15 (6): 650–659.

    Article  CAS  PubMed  Google Scholar 

  11. Li S, Zhu J, Zhang W, Chen Y, Zhang K, Popescu LM et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation 2011; 124 (2): 175–184.

    Article  CAS  PubMed  Google Scholar 

  12. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008; 18 (10): 997–1006.

    Article  CAS  PubMed  Google Scholar 

  13. Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N et al. Serum microRNAs are promising novel biomarkers. PLoS One 2008; 3 (9): e3148.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Krupinski J, Slevin M . Emerging molecular targets for brain repair after stroke. Stroke Res Treat 2013; 2013: 473416.

    PubMed  PubMed Central  Google Scholar 

  15. Qureshi IA, Mehler MF . The emerging role of epigenetics in stroke: II. RNA regulatory circuitry. Arch Neurol 2010; 67 (12): 1435–1441.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Koutsis G, Siasos G, Spengos K . The emerging role of microRNA in stroke. Curr Top Med Chem 2013; 13 (13): 1573–1588.

    Article  CAS  PubMed  Google Scholar 

  17. Wu P, Zuo X, Ji A . Stroke-induced microRNAs: the potential therapeutic role for stroke. Exp Ther Med 2012; 3 (4): 571–576.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Veglio F, Paglieri C, Rabbia F, Bisbocci D, Bergui M, Cerrato P . Hypertension and cerebrovascular damage. Atherosclerosis 2009; 205 (2): 331–341.

    Article  CAS  PubMed  Google Scholar 

  19. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 2013; 31 (7): 1281–1357.

    Article  CAS  PubMed  Google Scholar 

  20. Leoncini G, Viazzi F, Storace G, Deferrari G, Pontremoli R . Blood pressure variability and multiple organ damage in primary hypertension. J Hum Hypertens 2013; 27 (11): 663–670.

    Article  CAS  PubMed  Google Scholar 

  21. Qureshi AI, Mendelow AD, Hanley DF . Intracerebral haemorrhage. Lancet 2009; 373 (9675): 1632–1644.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Amarenco P, Bogousslavsky J, Caplan LR, Donnan GA, Hennerici MG . Classification of stroke subtypes. Cerebrovasc Dis 2009; 27 (5): 493–501.

    Article  CAS  PubMed  Google Scholar 

  23. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008; 105 (30): 10513–10518.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Reid G, Kirschner MB, van Zandwijk N . Circulating microRNAs: Association with disease and potential use as biomarkers. Crit Rev Oncol Hematol 2011; 80 (2): 193–208.

    Article  PubMed  Google Scholar 

  25. Yates LA, Norbury CJ, Gilbert RJ . The long and short of microRNA. Cell 2013; 153 (3): 516–519.

    Article  CAS  PubMed  Google Scholar 

  26. Behm-Ansmant I, Rehwinkel J, Izaurralde E . MicroRNAs silence gene expression by repressing protein expression and/or by promoting mRNA decay. Cold Spring Harb Symp Quant Biol 2006; 71: 523–530.

    Article  CAS  PubMed  Google Scholar 

  27. Fabian MR, Sonenberg N, Filipowicz W . Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 2010; 79: 351–379.

    Article  CAS  PubMed  Google Scholar 

  28. Chekulaeva M, Filipowicz W . Mechanisms of miRNA-mediated post-transcriptional regulation in animal cells. Curr Opin Cell Biol 2009; 21 (3): 452–460.

    Article  CAS  PubMed  Google Scholar 

  29. Djuranovic S, Nahvi A, Green R . A parsimonious model for gene regulation by miRNAs. Science 2011; 331 (6017): 550–553.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Stevens H, Jakobs C, de Jager AE, Cunningham RT, Korf J . Neurone-specific enolase and N-acetyl-aspartate as potential peripheral markers of ischaemic stroke. Eur J Clin Invest 1999; 29 (1): 6–11.

    Article  CAS  PubMed  Google Scholar 

  31. Wunderlich MT, Ebert AD, Kratz T, Goertler M, Jost S, Herrmann M . Early neurobehavioral outcome after stroke is related to release of neurobiochemical markers of brain damage. Stroke 1999; 30 (6): 1190–1195.

    Article  CAS  PubMed  Google Scholar 

  32. Ceolotto G, Papparella I, Bortoluzzi A, Strapazzon G, Ragazzo F, Bratti P et al. Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24 (2): 241–246.

    Article  CAS  PubMed  Google Scholar 

  33. Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX, White RE et al. miR-181 regulates GRP78 and influences outcome from cerebral ischemia in vitro and in vivo. Neurobiol Dis 2012; 45 (1): 555–563.

    Article  CAS  PubMed  Google Scholar 

  34. Jeyaseelan K, Lim KY, Armugam A . MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008; 39 (3): 959–966.

    Article  CAS  PubMed  Google Scholar 

  35. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 2010; 30 (1): 92–101.

    Article  PubMed  Google Scholar 

  36. Selvamani A, Sathyan P, Miranda RC, Sohrabji F . An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 2012; 7 (2): e32662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Laterza OF, Lim L, Garrett-Engele PW, Vlasakova K, Muniappa N, Tanaka WK et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem 2009; 55 (11): 1977–1983.

    Article  CAS  PubMed  Google Scholar 

  38. Weng H, Shen C, Hirokawa G, Ji X, Takahashi R, Shimada K et al. Plasma miR-124 as a biomarker for cerebral infarction. Biomed Res 2011; 32 (2): 135–141.

    Article  CAS  PubMed  Google Scholar 

  39. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW et al. Expression profile of MicroRNAs in young stroke patients. PLoS One 2009; 4 (11): e7689.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Chen J, Yang T, Yu H, Sun K, Shi Y, Song W et al. A functional variant in the 3'-UTR of angiopoietin-1 might reduce stroke risk by interfering with the binding efficiency of microRNA 211. Hum Mol Genet 2010; 19 (12): 2524–2533.

    Article  CAS  PubMed  Google Scholar 

  41. Bai Y, Wang L, Sun L, Ye P, Hui R . Circulating microRNA-26a: potential predictors and therapeutic targets for non-hypertensive intracerebral hemorrhage. Med Hypotheses 2011; 77 (4): 488–490.

    Article  CAS  PubMed  Google Scholar 

  42. Leeper NJ, Raiesdana A, Kojima Y, Chun HJ, Azuma J, Maegdefessel L et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol 2011; 226 (4): 1035–1043.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Zheng HW, Wang YL, Lin JX, Li N, Zhao XQ, Liu GF et al. Circulating MicroRNAs as potential risk biomarkers for hematoma enlargement after intracerebral hemorrhage. CNS Neurosci Ther 2012; 18 (12): 1003–1011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Guo D, Liu J, Wang W, Hao F, Sun X, Wu X et al. Alteration in abundance and compartmentalization of inflammation-related miRNAs in plasma after intracerebral hemorrhage. Stroke 2013; 44 (6): 1739–1742.

    Article  CAS  PubMed  Google Scholar 

  45. Gaughwin PM, Ciesla M, Lahiri N, Tabrizi SJ, Brundin P, Bjorkqvist M . Hsa-miR-34b is a plasma-stable microRNA that is elevated in pre-manifest Huntington's disease. Hum Mol Genet 2011; 20 (11): 2225–2237.

    Article  CAS  PubMed  Google Scholar 

  46. Wang WX, Rajeev BW, Stromberg AJ, Ren N, Tang G, Huang Q et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1. J Neurosci 2008; 28 (5): 1213–1223.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Ciesla M, Skrzypek K, Kozakowska M, Loboda A, Jozkowicz A, Dulak J . MicroRNAs as biomarkers of disease onset. Anal Bioanal Chem 2011; 401 (7): 2051–2061.

    Article  CAS  PubMed  Google Scholar 

  48. Heggermont WA, Heymans S . MicroRNAs are involved in end-organ damage during hypertension. Hypertension 2012; 60 (5): 1088–1093.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work will be kindly supported by grants from the Municipal Science and Technology and Information Technology Department of Guangzhou (132000567) and the Scientific and Technological Department of Guangdong Province (20130319c).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Tan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Jin, J., Chen, J. et al. Circulating microRNAs as potential non-invasive biomarkers for the early detection of hypertension-related stroke. J Hum Hypertens 28, 288–291 (2014). https://doi.org/10.1038/jhh.2013.94

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.94

Keywords

This article is cited by

Search

Quick links