Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Relationship between electrocardiographic left ventricular hypertrophy criteria and vascular structure and function parameters in hypertensive patients

Abstract

The objective of this study was to determine the electrocardiographic left ventricular hypertrophy (LVH) criterion that best correlated with vascular structure and function parameters in hypertensive patients. A cross-sectional study involving 347 hypertensive patients was performed. The mean age of the subjects was 54.9±11.8 years, and 61% were male. Electrocardiography was used to detect LVH based on the evaluation of 10 criteria, and we defined the voltage-duration product (VDP) complex criterion. The vascular structure was evaluated according to carotid intima-media thickness (C-IMT), and vascular function was evaluated according to pulse wave velocity (PWV), the ambulatory arterial stiffness index (AASI), the home arterial stiffness index, and the peripheral (PAIx) and central (CAIx) augmentation indices. LVH according to at least some electrocardiographic criteria was recorded in 29.10% of the patients (34.10% of females; 25.90% of males). The vascular structure and function parameters showed higher values in the hypertensive patients with LVH. The criterion most closely correlated with C-IMT was Lewis-VDP (r=0.257); with PWV and AASI, the criterion was the Framingham-adjusted Cornell voltage (r=0.228 and r=0.195, respectively); and with CAIx and PAIx, the criterion was Novacode (r=0.226 and r=0.277, respectively). In the multivariate analysis, the association of the vascular structure and function parameters, the VDP complex (multiple linear regression) and the presence of LVH (logistic regression) disappeared after adjusting for age, sex and antihypertensive drugs. The relationship between the electrocardiographic criteria used to detect LVH in hypertensive patients and the vascular structure and function parameters were fundamentally conditioned by age and antihypertensive drug treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Gattobigio R, Zampi I et al. Prognostic value of a new electrocardiographic method for diagnosis of left ventricular hypertrophy in essential hypertension. J Am Coll Cardiol 1998; 31 (2): 383–390.

    Article  CAS  Google Scholar 

  2. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA 2004; 292 (19): 2343–2349.

    Article  CAS  Google Scholar 

  3. Pewsner D, Juni P, Egger M, Battaglia M, Sundstrom J, Bachmann LM . Accuracy of electrocardiography in diagnosis of left ventricular hypertrophy in arterial hypertension: systematic review. BMJ 2007; 335 (7622): 711.

    Article  Google Scholar 

  4. Felix-Redondo FJ, Fernandez-Berges D, Calderon A, Consuegra-Sanchez L, Lozano L, Barrios V . Prevalence of left-ventricular hypertrophy by multiple electrocardiographic criteria in general population: Hermex study. J Hypertens 2012; 30 (7): 1460–1467.

    Article  CAS  Google Scholar 

  5. Gonzalez-Juanatey JR, Cea-Calvo L, Bertomeu V, Aznar J . [Electrocardiographic criteria for left ventricular hypertrophy and cardiovascular risk in hypertensives. VIIDA study]. Rev Esp Cardiol 2007; 60 (2): 148–156.

    Article  Google Scholar 

  6. Calderon A, Barrios V, Escobar C, Ferrer E, Barrios S, Gonzalez-Pedel V et al. Detection of left ventricular hypertrophy by different electrocardiographic criteria in clinical practice. Findings from the Sara study. Clin Exp Hypertens 2010; 32 (3): 145–153.

    Article  Google Scholar 

  7. Barrios V, Calderon A, Coca A, Gonzalez-Juanatey JR, Sarria A, Rodriguez-Padial L . [Computerized interpretation of the electrocardiogram in the diagnosis of left ventricular hypertrophy. The ELECTROPRES project]. Rev Clin Esp 2011; 211 (8): 391–399.

    CAS  PubMed  Google Scholar 

  8. Rodriguez-Padial L, Rodriguez-Picon B, Jerez-Valero M, Casares-Medrano J, Akerstrom FO, Calderon A et al. Diagnostic accuracy of computer-assisted electrocardiography in the diagnosis of left ventricular hypertrophy in left bundle branch block. Rev Esp Cardiol 2012; 65 (1): 38–46.

    Article  Google Scholar 

  9. Hancock EW, Deal BJ, Mirvis DM, Okin P, Kligfield P, Gettes LS et al. AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: part V: electrocardiogram changes associated with cardiac chamber hypertrophy: a scientific statement from the American Heart Association Electrocardiography and Arrhythmias Committee, Council on Clinical Cardiology; the American College of Cardiology Foundation; and the Heart Rhythm Society: endorsed by the International Society for Computerized Electrocardiology. Circulation 2009; 119 (10): e251–e261.

    Article  Google Scholar 

  10. Hsieh BP, Pham MX, Froelicher VF . Prognostic value of electrocardiographic criteria for left ventricular hypertrophy. Am Heart J 2005; 150 (1): 161–167.

    Article  Google Scholar 

  11. Chung CM, Lin YS, Chu CM, Chang ST, Cheng HW, Yang TY et al. Arterial stiffness is the independent factor of left ventricular hypertrophy determined by electrocardiogram. Am J Med Sci 2012; 344 (3): 190–193.

    Article  Google Scholar 

  12. Masugata H, Senda S, Hoshikawa J, Murao K, Hosomi N, Okuyama H et al. Elevated brachial-ankle pulse wave velocity is associated with left ventricular hypertrophy in hypertensive patients after stroke. Tohoku J Exp Med 2010; 220 (3): 177–182.

    Article  Google Scholar 

  13. Wang CP, Hung WC, Yu TH, Hsu HL, Chen YH, Chiu CA et al. Brachial-ankle pulse wave velocity as an early indicator of left ventricular diastolic function among hypertensive subjects. Clin Exp Hypertens 2009; 31 (1): 31–43.

    Article  Google Scholar 

  14. Mancia G, De Backer G, Dominiczak A, Cifkova R, Fagard R, Germano G et al. 2007 ESH-ESC Practice Guidelines for the Management of Arterial Hypertension: ESH-ESC Task Force on the Management of Arterial Hypertension. J Hypertens 2007; 25 (9): 1751–1762.

    Article  CAS  Google Scholar 

  15. World Medical Association declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. JAMA 1997; 277 (11): 925–926.

  16. Garcia-Ortiz L, Ramos-Delgado E, Recio-Rodriguez JI, Agudo-Conde C, Martinez-Salgado C, Patino-Alonso MC et al. Peripheral and central arterial pressure and its relationship to vascular target organ damage in carotid artery, retina and arterial stiffness. Development and validation of a tool. The Vaso risk study. BMC Public Health 2011; 11 (1): 266.

    Article  Google Scholar 

  17. O'Brien E, Asmar R, Beilin L, Imai Y, Mancia G, Mengden T et al. European Society of Hypertension Working Group on Blood Pressure M. Practice guidelines of the European Society of Hypertension for clinic, ambulatory and self blood pressure measurement. J Hypertens 2005; 23 (4): 697–701.

    Article  CAS  Google Scholar 

  18. Coca A, Bertomeu V, Dalfo A, Esmatjes E, Guillen F, Guerrero L et al. [Blood pressure self measurement: Spanish consensus document]. Nefrologia 2007; 27 (2): 139–153.

    CAS  PubMed  Google Scholar 

  19. Groppelli A, Omboni S, Parati G, Mancia G . Evaluation of noninvasive blood pressure monitoring devices Spacelabs 90202 and 90207 versus resting and ambulatory 24-hour intra-arterial blood pressure. Hypertension 1992; 20 (2): 227–232.

    Article  CAS  Google Scholar 

  20. O'Brien E, Petrie J, Littler W, de Swiet M, Padfield PL, O'Malley K et al. The British Hypertension Society protocol for the evaluation of automated and semi-automated blood pressure measuring devices with special reference to ambulatory systems. J Hypertens 1990; 8 (7): 607–619.

    Article  CAS  Google Scholar 

  21. Gomez-Marcos MA, Recio-Rodriguez JI, Patino-Alonso MC, Agudo-Conde C, Gomez-Sanchez L, Gomez-Sanchez M et al. Protocol for measuring carotid intima-media thickness that best correlates with cardiovascular risk and target organ damage. Am J Hypertens 2012; 25 (9): 955–961.

    Article  Google Scholar 

  22. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N et al. Mannheim carotid intima-media thickness consensus (2004-2006). An update on behalf of the Advisory Board of the 3rd and 4th Watching the Risk Symposium,13th and 15th European Stroke Conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 2007; 23 (1): 75–80.

    Article  Google Scholar 

  23. Li Y, Wang JG, Dolan E, Gao PJ, Guo HF, Nawrot T et al. Ambulatory arterial stiffness index derived from 24-hour ambulatory blood pressure monitoring. Hypertension 2006; 47 (3): 359–364.

    Article  CAS  Google Scholar 

  24. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30 (3): 445–448.

    Article  CAS  Google Scholar 

  25. Lozano JV, Redon J, Cea-Calvo L, Fernandez-Perez C, Navarro J, Bonet A et al. [Left ventricular hypertrophy in the Spanish hypertensive population. The ERIC-HTA study]. Rev Esp Cardiol 2006; 59 (2): 136–142.

    Article  Google Scholar 

  26. Barrios V, Escobar C, Calderon A, Ribas L, Marti D, Asin E . Prevalence of left ventricular hypertrophy detected by Cornell voltage-duration product in a hypertensive population. Blood Press 2008; 17 (2): 110–115.

    Article  Google Scholar 

  27. Cuspidi C, Grassi G . Electrocardiographic diagnosis of left-ventricular hypertrophy: good news for the clinician? J Hypertens 2012; 30 (5): 884–886.

    Article  CAS  Google Scholar 

  28. Cuspidi C, Meani S, Sala C, Valerio C, Negri F, Mancia G . Age related prevalence of severe left ventricular hypertrophy in essential hypertension: echocardiographic findings from the ETODH study. Blood Press 2012; 21 (3): 139–145.

    Article  Google Scholar 

  29. Tsiachris D, Chrysohoou C, Oikonomou E, Lazaros G, Dimitriadis K, Maragiannis D et al. Distinct role of electrocardiographic criteria in echocardiographic diagnosis of left ventricular hypertrophy according to age, in the general population: the Ikaria Study. J Hypertens 2011; 29 (8): 1624–1632.

    Article  CAS  Google Scholar 

  30. Paul J, Shaw K, Dasgupta S, Ghosh MK . Measurement of intima media thickness of carotid artery by B-mode ultrasound in healthy people of India and Bangladesh, and relation of age and sex with carotid artery intima media thickness: An observational study. J Cardiovasc Dis Res 2012; 3 (2): 128–131.

    Article  Google Scholar 

  31. Cecelja M, Chowienczyk P . Dissociation of aortic pulse wave velocity with risk factors for cardiovascular disease other than hypertension: a systematic review. Hypertension 2009; 54 (6): 1328–1336.

    Article  CAS  Google Scholar 

  32. Borlotti A, Khir AW, Rietzschel ER, De Buyzere ML, Vermeersch S, Segers P . Noninvasive determination of local pulse wave velocity and wave intensity: changes with age and gender in the carotid and femoral arteries of healthy human. J Appl Physiol 2012; 113 (5): 727–735.

    Article  Google Scholar 

  33. Van Bortel LM, Laurent S, Boutouyrie P, Chowienczyk P, Cruickshank JK, De Backer T et al. Expert consensus document on the measurement of aortic stiffness in daily practice using carotid-femoral pulse wave velocity. J Hypertens 2012; 30 (3): 445–448.

    Article  CAS  Google Scholar 

  34. Adiyaman A, Dechering DG, Boggia J, Li Y, Hansen TW, Kikuya M et al. Determinants of the ambulatory arterial stiffness index in 7604 subjects from 6 populations. Hypertension 2008; 52 (6): 1038–1044.

    Article  CAS  Google Scholar 

  35. Shimizu M, Kario K . Role of the augmentation index in hypertension. Ther Adv Cardiovasc Dis 2008; 2 (1): 25–35.

    Article  Google Scholar 

  36. Meijs MF, Doevendans PA, Cramer MJ, Vonken EJ, Velthuis BK, van der Graaf Y et al. Relation of common carotid intima-media thickness with left ventricular mass caused by shared risk factors for hypertrophy. J Am Soc Echocardiogr 2009; 22 (5): 499–504.

    Article  Google Scholar 

  37. Matsui Y, Ishikawa J, Eguchi K, Hoshide S, Miyashita H, Shimada K et al. The influence of wave reflection on left ventricular hypertrophy in hypertensive patients is modified by age and gender. Hypertens Res 2008; 31 (4): 649–656.

    Article  Google Scholar 

  38. Garcia-Garcia A, Gomez-Marcos MA, Recio-Rodriguez JI, Gonzalez-Elena LJ, Parra-Sanchez J, Fe Munoz-Moreno M et al. Relationship between ambulatory arterial stiffness index and subclinical target organ damage in hypertensive patients. Hypertens Res 2011; 34 (2): 180–186.

    Article  Google Scholar 

  39. Gomez-Marcos MA, Recio-Rodriguez JI, Patino-Alonso MC, Gomez-Sanchez L, Agudo-Conde C, Gomez-Sanchez M et al. Ambulatory arterial stiffness indices and target organ damage in hypertension. BMC Cardiovasc Disord 2012; 12: 1.

    Article  Google Scholar 

  40. Leoncini G, Ratto E, Viazzi F, Vaccaro V, Parodi A, Falqui V et al. Increased ambulatory arterial stiffness index is associated with target organ damage in primary hypertension. Hypertension 2006; 48 (3): 397–403.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Vaso risk group: L García-Ortiz, MA Gomez-Marcos, JI Recio-Rodríguez, C Agudo-Conde, MC Patino-Alonso, Emiliano Rodriguez-Sanchez, Emilio Ramos-Delgado, Luis J. González-Elena, Ángel García-García, Javier Parra-Sánchez, Carmela Rodríguez-Martín, Carmen Castaño-Sánchez, Angela de Cabo-Laso, Benigna Sánchez-Salgado (Unidad de Investigación de Atención Primaria La Alamedilla, Salamanca, Spain). We also thank Rosa Magallon-Botaya, Eva Andres (Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain); Carlos Martínez-Salgado, Ana M. Blázquez-Medela (Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Universidad de Salamanca, Salamanca, Spain). This project was supported by the Health Service of Castilla y León (GRS 498/A/10, GRS 632/A/11), the Carlos III Health Institute of the Spanish Ministry of Health (RETICS RD06/0018, RedIAPP and RD06/0016, RedinRen) and the Infosalud Foundation.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to M A Gómez-Marcos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez-Marcos, M., Recio-Rodríguez, J., Patino-Alonso, M. et al. Relationship between electrocardiographic left ventricular hypertrophy criteria and vascular structure and function parameters in hypertensive patients. J Hum Hypertens 28, 186–192 (2014). https://doi.org/10.1038/jhh.2013.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.87

Keywords

Search

Quick links