Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visit-to-visit blood pressure variability is related to albuminuria variability and progression in patients with type 2 diabetes

Abstract

Recent studies have suggested that visit-to-visit variability of blood pressure (BP) is correlated with microalbuminuria in patients with diabetes, independent of mean pressure. We investigated the contribution of BP variability to albuminuria progression in normoalbuminuric type 2 diabetes patients. BP and urinary albumin excretion of patients were assessed in each visit during a median follow-up of 31 months. Variability was assessed using standard deviation, coefficient of variation, standard deviation independent of mean, peak, average real variability, and average real variability independent of mean. Of 194 patients enrolled, 31 subjects (16.0%) developed microalbuminuria. Systolic blood pressure (SBP) variability indices (except for coefficient of variation and average real variability) were significant predictors of microalbuminuria in multivariate Cox regression models (hazard ratio ranging from 2.02 to 2.76). The same was not observed for diastolic blood pressure. Using linear regression, SBP variability significantly correlated with some but not all indices of albuminuria variability. Peak SBP was the strongest predictor of albuminuria variability in multivariate models (standardized beta ranging from 0.216 to 0.339). In conclusion, visit-to-visit variability of SBP is an independent risk factor for development of microalbuminuria in patients with diabetes, and is associated with an increased variability in albuminuria.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1

References

  1. American Diabetes Association. Standards of medical care in diabetes-2012. Diabetes Care 2012; 35 (Suppl 1): S11–S63.

    Google Scholar 

  2. Ritz E, Orth SR . Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med 1999; 341: 1127–1133.

    CAS  Article  Google Scholar 

  3. Brown JB, Pedula KL, Bakst AW . The progressive cost of complications in type 2 diabetes mellitus. Arch Intern Med 1999; 159: 1873–1880.

    CAS  Article  Google Scholar 

  4. Lambers Heerspink HJ, de Zeeuw D . Debate: PRO position. Should microalbuminuria ever be considered as a renal endpoint in any clinical trial? Am J Nephrol 2010; 31: 458–461 discussion 468.

    Article  Google Scholar 

  5. Afghahi H, Cederholm J, Eliasson B, Zethelius B, Gudbjornsdottir S, Hadimeri H et al. Risk factors for the development of albuminuria and renal impairment in type 2 diabetes-the Swedish National Diabetes Register (NDR). Nephrol Dial Transplant 2011; 26: 1236–1243.

    Article  Google Scholar 

  6. Parving HH, Lewis JB, Ravid M, Remuzzi G, Hunsicker LG . Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: a global perspective. Kidney Int 2006; 69: 2057–2063.

    Article  Google Scholar 

  7. Kilpatrick ES, Rigby AS, Atkin SL . The role of blood pressure variability in the development of nephropathy in type 1 diabetes. Diabetes Care 2010; 33: 2442–2447.

    Article  Google Scholar 

  8. Okada H, Fukui M, Tanaka M, Inada S, Mineoka Y, Nakanishi N et al. Visit-to-visit variability in systolic blood pressure is correlated with diabetic nephropathy and atherosclerosis in patients with type 2 diabetes. Atherosclerosis 2012; 220: 155–159.

    CAS  Article  Google Scholar 

  9. Araki S, Haneda M, Sugimoto T, Isono M, Isshiki K, Kashiwagi A et al. Factors associated with frequent remission of microalbuminuria in patients with type 2 diabetes. Diabetes 2005; 54: 2983–2987.

    CAS  Article  Google Scholar 

  10. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlöf B et al. Effects of β blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurology 2010; 9: 469–480.

    CAS  Article  Google Scholar 

  11. Parati G, Bilo G . Calcium antagonist added to angiotensin receptor blocker: a recipe for reducing blood pressure variability?: evidence from day-by-day home blood pressure monitoring. Hypertension 2012; 59: 1091–1093.

    CAS  Article  Google Scholar 

  12. Parati G, Ochoa JE, Bilo G . Blood pressure variability, cardiovascular risk, and risk for renal disease progression. Curr Hypertens Rep 2012; 14: 421–431.

    Article  Google Scholar 

  13. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009; 150: 604–612.

    Article  Google Scholar 

  14. Jackson S . Creatinine in urine as an index of urinary excretion Rate. Health Physics 1966; 12: 843–850.

    CAS  Article  Google Scholar 

  15. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2012; 35 (Suppl 1): S64–S71.

    Article  Google Scholar 

  16. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension 2003; 42: 1206–1252.

    CAS  Article  Google Scholar 

  17. Casas JP, Chua W, Loukogeorgakis S, Vallance P, Smeeth L, Hingorani AD et al. Effect of inhibitors of the renin-angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet 2005; 366: 2026–2033.

    CAS  Article  Google Scholar 

  18. Rothwell PM, Howard SC, Dolan E, O'Brien E, Dobson JE, Dahlöf B et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010; 375: 895–905.

    Article  Google Scholar 

  19. Mena L, Pintos S, Queipo NV, Aizpurua JA, Maestre G, Sulbaran T . A reliable index for the prognostic significance of blood pressure variability. J Hypertens 2005; 23: 505–511.

    CAS  Article  Google Scholar 

  20. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G . Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens 1987; 5: 93.

    CAS  Article  Google Scholar 

  21. Ekbom T, Dahlof B, Hansson L, Lindholm LH, Oden A, Schersten B et al. The stroke preventive effect in elderly hypertensives cannot fully be explained by the reduction in office blood pressure-insights from the Swedish Trial in Old Patients with Hypertension (STOP-Hypertension). Blood Press 1992; 1: 168–172.

    CAS  Article  Google Scholar 

  22. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G . Prognostic value of 24-hour blood pressure variability. J Hypertens 1993; 11: 1133.

    CAS  Article  Google Scholar 

  23. Omboni S, Parati G, Palatini P, Vanasia A, Muiesan ML, Cuspidi C et al. Reproducibility and clinical value of nocturnal hypotension: prospective evidence from the SAMPLE study. Study on Ambulatory Monitoring of Pressure and Lisinopril Evaluation. J Hypertens 1998; 16: 733–738.

    CAS  Article  Google Scholar 

  24. Parati G, Ravogli A, Frattola A, Groppelli A, Ulian L, Santucciu C et al. Blood pressure variability: clinical implications and effects of antihypertensive treatment. J Hypertens Suppl 1994; 12: S35–S40.

    CAS  Article  Google Scholar 

  25. Tozawa M, Iseki K, Yoshi S, Fukiyama K . Blood pressure variability as an adverse prognostic risk factor in end-stage renal disease. Nephrol Dial Transplant 1999; 14: 1976–1981.

    CAS  Article  Google Scholar 

  26. Carlberg B, Lindholm LH . Stroke and blood-pressure variation: new permutations on an old theme. Lancet 2010; 375: 867–869.

    Article  Google Scholar 

  27. Hsieh YT, Tu ST, Cho TJ, Chang SJ, Chen JF, Hsieh MC . Visit‐to‐visit variability in blood pressure strongly predicts all‐cause mortality in patients with type 2 diabetes: a 5· 5‐year prospective analysis. Eur J Clin Invest 2012; 42: 245–253.

    Article  Google Scholar 

  28. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S . The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population. Hypertension 2011; 57: 160–166.

    CAS  Article  Google Scholar 

  29. Palmas W, Pickering TG, Teresi J, Schwartz JE, Moran A, Weinstock RS et al. Ambulatory blood pressure monitoring and all-cause mortality in elderly people with diabetes mellitus. Hypertension 2009; 53: 120–127.

    CAS  Article  Google Scholar 

  30. Klag MJ, Whelton PK, Randall BL, Neaton JD, Brancati FL, Ford CE et al. Blood pressure and end-stage renal disease in men. N Engl J Med 1996; 334: 13–18.

    CAS  Article  Google Scholar 

  31. Bakris GL, Weir MR, Shanifar S, Zhang Z, Douglas J, van Dijk DJ et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Int Med 2003; 163: 1555.

    Article  Google Scholar 

  32. Kawai T, Ohishi M, Kamide K, Onishi M, Takeya Y, Tatara Y et al. The impact of visit-to-visit variability in blood pressure on renal function. Hypertens Res 2011; 35: 239–243.

    Article  Google Scholar 

  33. Mogensen CE, Vestbo E, Poulsen PL, Christiansen C, Damsgaard EM, Eiskjaer H et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 1995; 18: 572–581.

    CAS  Article  Google Scholar 

  34. Mogensen CE . Microalbuminuria, early blood pressure elevation, and diabetic renal disease. Curr Opin Endocrin, Diab Obes 1994; 1: 239–248.

    Article  Google Scholar 

  35. Gomes MB, Goncalves MF . Is there a physiological variability for albumin excretion rate? Study in patients with diabetes type 1 and non-diabetic individuals. Clin Chim Acta 2001; 304: 117–123.

    CAS  Article  Google Scholar 

  36. Chau NP, Bouhanick B, Mestivier D, Taki M, Marre M . Normal and abnormal day-to-day variability of urinary albumin excretion in control and diabetic subjects. Diabetes Metab 2000; 26: 36–41.

    CAS  PubMed  Google Scholar 

  37. Perkins RM, Tang X, Bengier AC, Kirchner HL, Bucaloiu ID . Variability in estimated glomerular filtration rate is an independent risk factor for death among patients with stage 3 chronic kidney disease. Kidney Int 2012; 82: 1332–1338.

    CAS  Article  Google Scholar 

  38. Grassi G . Sympathetic neural activity in hypertension and related diseases. Am J Hypertens 2010; 23: 1052–1060.

    Article  Google Scholar 

  39. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation 2002; 105: 1354–1359.

    CAS  Article  Google Scholar 

  40. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension 2011; 57: 846–851.

    CAS  Article  Google Scholar 

  41. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertnes 2002; 20: 2183.

    CAS  Article  Google Scholar 

  42. Eto M, Toba K, Akishita M, Kozaki K, Watanabe T, Kim S et al. Reduced endothelial vasomotor function and enhanced neointimal formation after vascular injury in a rat model of blood pressure lability. Hypertens Res 2003; 26: 991–998.

    Article  Google Scholar 

  43. Sibal L, Agarwal SC, Home PD, Boger RH . The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 2010; 6: 82–90.

    CAS  Article  Google Scholar 

  44. Shantsila A, Dwivedi G, Shantsila E, Butt M, Beevers DG, Lip GY . Persistent macrovascular and microvascular dysfunction in patients with malignant hypertension. Hypertension 2011; 57: 490–496.

    CAS  Article  Google Scholar 

  45. Levitan EB, Kaciroti N, Oparil S, Julius S, Muntner P . Blood pressure measurement device, number and timing of visits, and intra-individual visit-to-visit variability of blood pressure. J Clin Hypertens (Greenwich) 2012; 14: 744–750.

    Article  Google Scholar 

  46. Howard SC, Rothwell PM . Reproducibility of measures of visit-to-visit variability in blood pressure after transient ischaemic attack or minor stroke. Cerebrovasc Dis 2009; 28: 331–340.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Esteghamati.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Author contributions

AE conceived the study, participated in its design, coordination and acquisition of data. MG was involved in recruiting patients and collecting data. SN performed statistical analyses. SN and MM contributed to patient recruitment and also prepared an early draft of the manuscript. MN participated in interpretation of the results and editing the manuscript. All authors read and approved the final manuscript.

Supplementary Information accompanies this paper on the Journal of Human Hypertension website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Noshad, S., Mousavizadeh, M., Mozafari, M. et al. Visit-to-visit blood pressure variability is related to albuminuria variability and progression in patients with type 2 diabetes. J Hum Hypertens 28, 37–43 (2014). https://doi.org/10.1038/jhh.2013.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2013.36

Keywords

  • blood pressure visit-to-visit variability
  • microalbuminuria
  • type 2 diabetes
  • diabetic nephropathy

This article is cited by

Search

Quick links