Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Matrix metalloproteinases and their tissue inhibitors in hypertension-related pregnancy complications

Abstract

Matrix metalloproteinases (MMPs) are a family of endopeptidases that degrade the components of the extracellular matrix (ECM) such as collagen, and thus contribute to the remodelling and the physiological homeostasis of the ECM and its blood supply. The activities of these enzymes are regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and it has been suggested that a balance between MMPs and TIMPs plays an important role in vascular remodelling, angiogenesis and vasodilatation in a number of physiological situations. It follows that, regarding a relationship between MMPs and TIMPs, an imbalance between these molecules may lead to pathology in a wide range of conditions, including hypertension, cancer and pulmonary disease, and in the pathophysiology of reproduction. Indeed, regarding the latter, abnormalities in the maternal peripheral vasculature have been proposed as being (partly) responsible for the effects of hypertension on pregnancy and the development of complications including pre-eclampsia and eclampsia. However, the associations between MMPs, TIMPs and disease may be simply of association, not of pathology. This brief review explores current literature on the role of abnormalities of the ECM in general, focusing on the pathogenesis of hypertension and its complications during pregnancy as a model of disordered angiogenesis and remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Lijnen HR . Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001; 86: 324–333.

    Article  CAS  PubMed  Google Scholar 

  2. Kugler A . Matrix metalloproteinases and their inhibitors. Anticancer Res 1999; 19: 1589–1592.

    CAS  PubMed  Google Scholar 

  3. Sang QX . Complex role of matrix metalloproteinases in angiogenesis. Cell Res 1998; 8: 171–177.

    Article  CAS  PubMed  Google Scholar 

  4. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A et al. Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 1993; 4: 197–250.

    Article  CAS  PubMed  Google Scholar 

  5. Derosa G, D’Angelo A, Ciccarelli L, Piccinni MN, Pricolo F, Salvadeo S et al. Matrix metalloproteinase-2, -9, and tissue inhibitor of metalloproteinase-1 in patients with hypertension. Endothelium 2006; 13: 227–231.

    Article  CAS  PubMed  Google Scholar 

  6. Tan J, Hua Q, Xing X, Wen J, Liu R, Yang Z . Impact of the metalloproteinase-9/tissue inhibitor of metalloproteinase-1 system on large arterial stiffness in patients with essential hypertension. Hypertens Res 2007; 30: 959–963.

    Article  CAS  PubMed  Google Scholar 

  7. Franz M, Berndt A, Altendorf-Hofmann A, Fiedler N, Richter P, Schumm J et al. Serum levels of large tenascin-C variants, matrix metalloproteinase-9, and tissue inhibitors of matrix metalloproteinases in concentric versus eccentric left ventricular hypertrophy. Eur J Heart Fail 2009; 11: 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  8. Ahmed SH, Clark LL, Pennington WR, Webb CS, Bonnema DD, Leonardi AH et al. Matrix metalloproteinases/tissue inhibitors of metalloproteinases: relationship between changes in proteolytic determinants of matrix composition and structural, functional, and clinical manifestations of hypertensive heart disease. Circulation 2006; 113: 2089–2096.

    Article  CAS  PubMed  Google Scholar 

  9. Heymans S, Schroen B, Vermeersch P, Milting H, Gao F, Kassner A et al. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation 2005; 112: 1136–1144.

    Article  CAS  PubMed  Google Scholar 

  10. Elmas E, Lang S, Dempfle CE, Kälsch T, Hannak D, Sueselbeck T et al. High plasma levels of tissue inhibitor of metalloproteinase-1 (TIMP-1) and interleukin-8 (IL-8) characterize patients prone to ventricular fibrillation complicating myocardial infarction. Clin Chem Lab Med 2007; 45: 1360–1365.

    Article  CAS  PubMed  Google Scholar 

  11. Newby AC, Southgate KM, Davies M . Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Res Cardiol 1994; 89 (Suppl 1): 59–70.

    CAS  PubMed  Google Scholar 

  12. Kadoglou NP, Daskalopoulou SS, Perrea D, Liapis CD . Matrix metalloproteinases and diabetic vascular complications. Angiology 2005; 56: 173–189.

    Article  PubMed  Google Scholar 

  13. Sheppard SJ, Khalil RA . Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc Hematol Disord Drug Targets 2010; 10: 33–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Montagnana M, Lippi G, Albiero A, Scevarolli S, Salvagno GL, Franchi M et al. Evaluation of metalloproteinases 2 and 9 and their inhibitors in physiologic and pre-eclamptic pregnancy. J Clin Lab Anal 2009; 23: 88–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tayebjee MH, Karalis I, Nadar SK, Beevers DG, MacFadyen RJ, Lip GY . Circulating matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases-1 and -2 levels in gestational hypertension. Am J Hypertens 2005; 18: 325–329.

    Article  CAS  PubMed  Google Scholar 

  16. Van Lint P, Libert C . Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation. J Leukoc Biol 2007; 82: 1375–1381.

    Article  CAS  PubMed  Google Scholar 

  17. Opdenakker G, Van den Steen PE, Dubois B, Nelissen I, Van Coillie E, Masure S et al. Gelatinase B functions as regulator and effector in leukocyte biology. J Leukoc Biol 2001; 69: 851–859.

    CAS  PubMed  Google Scholar 

  18. Shapiro SD, Kobayashi DK, Ley TJ . Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar macrophages. J Biol Chem 1993; 268: 23824–23829.

    Article  CAS  PubMed  Google Scholar 

  19. Pendas AM, Knauper V, Puente XS, Llano E, Mattei MG, Apte S et al. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem 1997; 272: 4281–4286.

    Article  CAS  PubMed  Google Scholar 

  20. Kolb C, Mauch S, Peter HH, Krawinkel U, Sedlacek R . The matrix metalloproteinase RASI-1 is expressed in synovial blood vessels of a rheumatoid arthritis patient. Immunol Lett 1997; 57: 83–88.

    Article  CAS  PubMed  Google Scholar 

  21. Denhardt DT, Feng B, Edwards DR, Cocuzzi ET, Malyankar UM . Tissue inhibitor of metalloproteinases (TIMP, aka EPA): structure, control of expression and biological functions. Pharmacol Ther 1993; 59: 329–341.

    Article  CAS  PubMed  Google Scholar 

  22. Khokha R, Waterhouse P . The role of tissue inhibitor of metalloproteinase-1 in specific aspects of cancer progression and reproduction. J Neurooncol 1994; 18: 123–127.

    Article  CAS  PubMed  Google Scholar 

  23. Nagase H, Suzuki K, Itoh Y, Kan CC, Gehring MR, Huang W et al. Involvement of tissue inhibitors of metalloproteinases (TIMPS) during matrix metalloproteinase activation. Adv Exp Med Biol 1996; 389: 23–31.

    Article  CAS  PubMed  Google Scholar 

  24. Raffetto JD, Khalil RA . Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol 2008; 75: 346–359.

    Article  CAS  PubMed  Google Scholar 

  25. Arthur MJ, Iredale JP, Mann DA . Tissue inhibitors of metalloproteinases: role in liver fibrosis and alcoholic liver disease. Alcohol Clin Exp Res 1999; 23: 940–943.

    CAS  PubMed  Google Scholar 

  26. Shiomi T, Okada Y . MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metast Rev 2003; 22: 145–152.

    Article  CAS  Google Scholar 

  27. Toi M, Ishigaki S, Tominaga T . Metalloproteinases and tissue inhibitors of metalloproteinases. Breast Cancer Res Treat 1998; 52: 113–124.

    Article  CAS  PubMed  Google Scholar 

  28. DeClerck YA . Purification and characterization of a collagenase inhibitor produced by bovine vascular smooth muscle cells. Arch Biochem Biophys 1988; 265: 28–37.

    Article  CAS  PubMed  Google Scholar 

  29. Apte SS, Mattei MG, Olsen BR . Cloning of the cDNA encoding human tissue inhibitor of metalloproteinases-3 (TIMP-3) and mapping of the TIMP3 gene to chromosome 22. Genomics 1994; 19: 86–90.

    Article  CAS  PubMed  Google Scholar 

  30. Apte SS, Olsen BR, Murphy G . The gene structure of tissue inhibitor of metalloproteinases (TIMP)-3 and its inhibitory activities define the distinct TIMP gene family. J Biol Chem 1996; 271: 2874.

    Article  CAS  PubMed  Google Scholar 

  31. Weir RA, Clements S, Steedman T, Dargie HJ, McMurray JJ, Squire IB et al. Plasma TIMP-4 predicts left ventricular remodeling after acute myocardial infarction. J Card Fail 2011; 17: 465–471.

    Article  CAS  PubMed  Google Scholar 

  32. Meissburger B, Stachorski L, Röder E, Rudofsky G, Wolfrum C . Tissue inhibitor of matrix metalloproteinase 1 (TIMP1) controls adipogenesis in obesity in mice and in humans. Diabetologia 2011; 54: 1468–1479.

    Article  CAS  PubMed  Google Scholar 

  33. Kelly D, Squire IB, Khan SQ, Dhillon O, Narayan H, Ng KH et al. Usefulness of plasma tissue inhibitors of metalloproteinases as markers of prognosis after acute myocardial infarction. Am J Cardiol 2010; 106: 477–482.

    Article  CAS  PubMed  Google Scholar 

  34. Remacle AG, Shiryaev SA, Radichev IA, Rozanov DV, Stec B, Strongin AY . Dynamic interdomain interactions contribute to the inhibition of matrix metalloproteinases (MMPs) by tissue inhibitors of metalloproteinases (TIMPs). J Biol Chem 2011; 286: 21002–21012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Tamarina NA, McMillan WD, Shively VP, Pearce WH . Expression of matrix metalloproteinases and their inhibitors in aneurysms and normal aorta. Surgery 1997; 122: 264–271.

    Article  CAS  PubMed  Google Scholar 

  36. Jung K, Lein M, Ulbrich N, Rudolph B, Henke W, Schnorr D et al. Quantification of matrix metalloproteinases and tissue inhibitors of metalloproteinase in prostatic tissue: analytical aspects. Prostate 1998; 34: 130–136.

    Article  CAS  PubMed  Google Scholar 

  37. Marín F, Roldán V, Climent V, Garcia A, Marco P, Lip GY . Is thrombogenesis in atrial fibrillation related to matrix metalloproteinase-1 and its inhibitor, TIMP-1? Stroke 2003; 34: 1181–1186.

    Article  PubMed  CAS  Google Scholar 

  38. Wilson EM, Gunasinghe HR, Coker ML, Sprunger P, Lee-Jackson D, Bozkurt B et al. Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Card Fail 2002; 8: 390–398.

    Article  CAS  PubMed  Google Scholar 

  39. Schnaper HW, Grant DS, Stetler-Stevenson WG, Fridman R, D’Orazi G, Murphy AN et al. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 1993; 156: 235–246.

    Article  CAS  PubMed  Google Scholar 

  40. Miya M, Maeshima A, Mishima K, Sakurai N, Ikeuchi H, Kuroiwa T et al. Enhancement of in vitro human tubulogenesis by endothelial cell-derived factors: implications for in vivo tubular regeneration after injury. Am J Physiol Renal Physiol 2011; 301: F387–F395.

    Article  CAS  PubMed  Google Scholar 

  41. Kemik O, Kemik AS, Sümer A, Dulger AC, Adas M, Begenik H et al. Levels of matrix metalloproteinase-1 and tissue inhibitors of metalloproteinase-1 in gastric cancer. World J Gastroenterol 2011; 17: 2109–2112.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mroczko B, Lukaszewicz-Zając M, Gryko M, Kêdra B, Szmitkowski M . Clinical significance of serum levels of matrix metalloproteinase 2 (MMP-2) and its tissue inhibitor (TIMP-2) in gastric cancer. Folia Histochem Cytobiol 2011; 49: 125–131.

    Article  CAS  PubMed  Google Scholar 

  43. Musia K, Zwoliñska D . Matrix metalloproteinases and soluble Fas/FasL system as novel regulators of apoptosis in children and young adults on chronic dialysis. Apoptosis 2011; 16: 653–659.

    Article  CAS  Google Scholar 

  44. Laviades C, Varo N, Fernández J, Mayor G, Gil MJ, Monreal I et al. Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 1998; 98: 535–540.

    Article  CAS  PubMed  Google Scholar 

  45. Li-Saw-Hee FL, Edmunds E, Blann AD, Beevers DG, Lip GY . Matrix metalloproteinase-9 and tissue inhibitor metalloproteinase-1 levels in essential hypertension. Relationship to left ventricular mass and anti-hypertensive therapy. Int J Cardiol 2000; 75: 43–47.

    Article  CAS  PubMed  Google Scholar 

  46. Zervoudaki A, Economou E, Stefanadis C, Pitsavos C, Tsioufis K, Aggeli C et al. Plasma levels of active extracellular matrix metalloproteinases 2 and 9 in patients with essential hypertension before and after antihypertensive treatment. J Hum Hypertens 2003; 17: 119–124.

    Article  CAS  PubMed  Google Scholar 

  47. Antoniou GA, Tentes IK, Antoniou SA, Georgiadis GS, Giannoukas AD, Simopoulos C et al. Circulating matrix metalloproteinases and their inhibitors in inguinal hernia and abdominal aortic aneurysm. Int Angiol 2011; 30: 123–129.

    CAS  PubMed  Google Scholar 

  48. Mammi C, Sala A, Volterrani M, Gatta L, Antelmi A, Feraco A et al. Exercise training reduces serum capacity to induce endothelial cell death in patients with chronic heart failure. Eur J Heart Fail 2011; 13: 642–650.

    Article  CAS  PubMed  Google Scholar 

  49. Yang DC, Ma ST, Tan Y, Chen YH, Li D, Tang B et al. Imbalance of matrix metalloproteinases/tissue inhibitor of metalloproteinase-1 and loss of fibronectin expression in patients with congestive heart failure. Cardiology 2010; 116: 133–141.

    Article  CAS  PubMed  Google Scholar 

  50. Okumura Y, Watanabe I, Nakai T, Ohkubo K, Kofune T, Kofune M et al. Impact of biomarkers of inflammation and extracellular matrix turnover on the outcome of atrial fibrillation ablation: importance of matrix metalloproteinase-2 as a predictor of atrial fibrillation recurrence. J Cardiovasc Electrophysiol 2011; 22: 987–993.

    Article  PubMed  Google Scholar 

  51. Idriss NK, Lip GY, Balakrishnan B, Jaumdally R, Boos CJ, Blann AD . Plasma haemoxygenase-1 in coronary artery disease. A comparison with angiogenin, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 and vascular endothelial growth factor. Thromb Haemost 2010; 104: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  52. Brunner S, Kim JO, Methe H . Relation of matrix metalloproteinase-9/tissue inhibitor of metalloproteinase-1 ratio in peripheral circulating CD14+ monocytes to progression of coronary artery disease. Am J Cardiol 2010; 105: 429–434.

    Article  CAS  PubMed  Google Scholar 

  53. Kaireviciute D, Blann AD, Balakrishnan B, Lane DA, Patel JV, Uzdavinys G et al. Characterisation and validity of inflammatory biomarkers in the prediction of post-operative atrial fibrillation in coronary artery disease patients. Thromb Haemost 2010; 104: 122–127.

    Article  CAS  PubMed  Google Scholar 

  54. Givvimani S, Tyagi N, Sen U, Mishra PK, Qipshidze N, Munjal C et al. MMP-2/TIMP-2/TIMP-4 versus MMP-9/TIMP-3 in transition from compensatory hypertrophy and angiogenesis to decompensatory heart failure. Arch Physiol Biochem 2010; 116: 63–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Kandalam V, Basu R, Abraham T, Wang X, Soloway PD, Jaworski DM et al. TIMP2 deficiency accelerates adverse post-myocardial infarction remodeling because of enhanced MT1-MMP activity despite lack of MMP2 activation. Circ Res 2010; 106: 796–808.

    Article  CAS  PubMed  Google Scholar 

  56. Castro MM, Rizzi E, Prado CM, Rossi MA, Tanus-Santos JE, Gerlach RF . Imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases in hypertensive vascular remodeling. Matrix Biol 2010; 29: 194–201.

    Article  CAS  PubMed  Google Scholar 

  57. Hansson J, Vasan RS, Ärnlöv J, Ingelsson E, Lind L, Larsson A et al. Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: cohort study. PLoS One 2011; 6: e16185.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Velagaleti RS, Gona P, Sundström J, Larson MG, Siwik D, Colucci WS et al. Relations of biomarkers of extracellular matrix remodeling to incident cardiovascular events and mortality. Arterioscler Thromb Vasc Biol 2010; 30: 2283–2288.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Tayebjee MH, Nadar S, Blann AD, Gareth Beevers D, MacFadyen RJ, Lip GY . Matrix metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in hypertension and their relationship to cardiovascular risk and treatment: a substudy of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT). Am J Hypertens 2004; 17: 764–769.

    CAS  PubMed  Google Scholar 

  60. Yasmin, McEniery CM, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 2005; 25: 372.

    Article  CAS  PubMed  Google Scholar 

  61. McNulty M, Mahmud A, Spiers P, Feely J . Collagen type-I degradation is related to arterial stiffness in hypertensive and normotensive subjects. J Hum Hypertens 2006; 20: 867–873.

    Article  CAS  PubMed  Google Scholar 

  62. Saglam M, Karakaya O, Esen AM, Barutcu I, Dogan S, Karavelioglu Y et al. Contribution of plasma matrix metalloproteinases to development of left ventricular hypertrophy and diastolic dysfunction in hypertensive subjects. Tohoku J Exp Med 2006; 208: 117–122.

    Article  CAS  PubMed  Google Scholar 

  63. Ergul A, Portik-Dobos V, Hutchinson J, Franco J, Anstadt MP . Downregulation of vascular matrix metalloproteinase inducer and activator proteins in hypertensive patients. Am J Hypertens 2004; 17: 775–782.

    Article  CAS  PubMed  Google Scholar 

  64. Spinale FG . Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 2007; 87: 1285–1342.

    Article  CAS  PubMed  Google Scholar 

  65. ACOG technical bulletin. Hypertension in pregnancy. Number 219—January 1996 (replaces no. 91, February 1986). Committee on Technical Bulletins of the American College of Obstetricians and Gynecologists. Int J Gynaecol Obstet 1996; 53: 175–183.

    Article  Google Scholar 

  66. National High Blood Pressure Education Program Working Group. Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am J Obstet Gynecol 2000; 183: S1–S22.

  67. Symonds EM . Aetiology of pre-eclampsia: a review. J R Soc Med 1980; 73: 871–875.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Page EW . The physiological basis of symptoms in eclampsia. Californ Med 1949; 70: 1–4.

    CAS  Google Scholar 

  69. Chesley LC . Vascular reactivity in normal and toxemic pregnancy. Clin Obstet Gynecol 1966; 9: 871–881.

    Article  CAS  PubMed  Google Scholar 

  70. Lyall F, Greer IA . The vascular endothelium in normal pregnancy and pre-eclampsia. Rev Reprod 1996; 1: 107–116.

    Article  CAS  PubMed  Google Scholar 

  71. Meekins JW, McLaughlin PJ, West DC, McFadyen IR, Johnson PM . Endothelial cell activation by tumour necrosis factor-alpha (TNF-alpha) and the development of pre-eclampsia. Clin Exp Immunol 1994; 98: 110–114.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Rutherford RA, McCarthy A, Sullivan MH, Elder MG, Polak JM, Wharton J . Nitric oxide synthase in human placenta and umbilical cord from normal, intrauterine growth-retarded and pre-eclamptic pregnancies. Br J Pharmacol 1995; 116: 3099–3109.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhou Y, Damsky CH, Fisher SJ . Pre-eclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 1997; 99: 2152–2164.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Cartwright JE, Fraser R, Leslie K, Wallace AE, James JL . Remodelling at the maternal–fetal interface: relevance to human pregnancy disorders. Reproduction 2010; 140: 803–813.

    Article  CAS  PubMed  Google Scholar 

  75. Harris LK . Review: trophoblast–vascular cell interactions in early pregnancy: how to remodel a vessel. Placenta 2010; 31 (Suppl): S93–S98.

    Article  CAS  PubMed  Google Scholar 

  76. Bryant-Greenwood GD . The extracellular matrix of the human fetal membranes: structure and function. Placenta 1998; 19: 1–11.

    Article  CAS  PubMed  Google Scholar 

  77. Wulff C, Weigand M, Kreienberg R, Fraser HM . Angiogenesis during primate placentation in health and disease. Reproduction 2003; 126: 569–577.

    Article  CAS  PubMed  Google Scholar 

  78. Huppertz B, Peeters LL . Vascular biology in implantation and placentation. Angiogenesis 2005; 8: 157–167.

    Article  PubMed  Google Scholar 

  79. Karthikeyan VJ, Lip GY, Baghdadi S, Lane DA, Beevers DG, Blann AD . Angiogenin and hemoxygenase in pregnancy: influence of hypertension. Angiology 2012; 63: 194–198.

    Article  CAS  PubMed  Google Scholar 

  80. Lalu MM, Xu H, Davidge ST . Matrix metalloproteinases: control of vascular function and their potential role in preeclampsia. Front Biosci 2007; 12: 2484–2493.

    Article  CAS  PubMed  Google Scholar 

  81. van Hinsbergh VW, Engelse MA, Quax PH . Pericellular proteases in angiogenesis and vasculogenesis. Arterioscler Thromb Vasc Biol 2006; 26: 716–728.

    Article  CAS  PubMed  Google Scholar 

  82. Isaka K, Usuda S, Ito H, Sagawa Y, Nakamura H, Nishi H et al. Expression and activity of matrix metalloproteinase 2 and 9 in human trophoblasts. Placenta 2003; 24: 53–64.

    Article  CAS  PubMed  Google Scholar 

  83. Sawicki G, Radomski MW, Winkler-Lowen B, Krzymien A, Guilbert LJ . Polarized release of matrix metalloproteinase-2 and -9 from cultured human placental syncytiotrophoblasts. Biol Reprod 2000; 63: 1390–1395.

    Article  CAS  PubMed  Google Scholar 

  84. Merchant SJ, Davidge ST . The role of matrix metalloproteinases in vascular function: implications for normal pregnancy and pre-eclampsia. Br J Obs Gynae 2004; 111: 931–939.

    Article  CAS  Google Scholar 

  85. Kelly BA, Bond BC, Poston L . Gestational profile of matrix metalloproteinases in rat uterine artery. Mol Hum Reprod 2003; 9: 351–358.

    Article  CAS  PubMed  Google Scholar 

  86. Jones RL, Findlay JK, Farnworth PG, Robertson DM, Wallace E, Salamonsen LA . Activin A and inhibin A differentially regulate human uterine matrix metalloproteinases: potential interactions during decidualization and trophoblast invasion. Endocrinology 2006; 147: 724–732.

    Article  CAS  PubMed  Google Scholar 

  87. Dubois B, Arnold B, Opdenakker G . Gelatinase B deficiency impairs reproduction. J Clin Invest 2000; 106: 627–628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Jim B, Sharma S, Kebede T, Acharya A . Hypertension in pregnancy: a comprehensive update. Cardiol Rev 2010; 18: 178–189.

    Article  PubMed  Google Scholar 

  89. Palei AC, Sandrim VC, Cavalli RC, Tanus-Santos JE . Comparative assessment of matrix metalloproteinase (MMP)-2 and MMP-9, and their inhibitors, tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 in preeclampsia and gestational hypertension. Clin Biochem 2008; 41: 875–880.

    Article  CAS  PubMed  Google Scholar 

  90. Singh M, Kindelberger D, Nagymanyoki Z, Ng SW, Quick CM, Elias KM et al. Matrix metalloproteinases and their inhibitors and inducer in gestational trophoblastic diseases and normal placenta. Gynecol Oncol 2011; 122: 178–182.

    Article  CAS  PubMed  Google Scholar 

  91. Narumiya H, Zhang Y, Fernandez-Patron C, Guilbert LJ, Davidge ST . Matrix metalloproteinase-2 is elevated in the plasma of women with preeclampsia. Hypertens Pregnancy 2001; 20: 185–194.

    Article  CAS  PubMed  Google Scholar 

  92. Myers JE, Merchant SJ, Macleod M, Mires GJ, Baker PN, Davidge ST . MMP-2 levels are elevated in the plasma of women who subsequently develop preeclampsia. Hypertens Pregnancy 2005; 24: 103–115.

    Article  CAS  PubMed  Google Scholar 

  93. Lavee M, Goldman S, Daniel-Spiegel E, Shalev E . Matrix metalloproteinase-2 is elevated in midtrimester amniotic fluid prior to the development of preeclampsia. Reprod Biol Endocrinol 2009; 7: 85–89.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  94. de Jager CA, Linton EA, Spyropoulou I, Sargent IL, Redman CW . Matrix metalloprotease-9, placental syncytiotrophoblast and the endothelial dysfunction of pre-eclampsia. Placenta 2003; 24: 84–91.

    Article  CAS  PubMed  Google Scholar 

  95. Gallery ED, Campbell S, Arkell J, Nguyen M, Jackson CJ . Preeclamptic decidual microvascular endothelial cells express lower levels of matrix metalloproteinase-1 than normals. Microvasc Res 1999; 57: 340–346.

    Article  CAS  PubMed  Google Scholar 

  96. Schipper EJ, Bolte AC, Schalkwijk CG, Van Geijn HP, Dekker GA . TNF-receptor levels in preeclampsia—results of a longitudinal study in high-risk women. J Matern Fetal Neonatal Med 2005; 18: 283–287.

    Article  CAS  PubMed  Google Scholar 

  97. Galewska Z, Romanowicz L, Jaworski S, Bañkowski E . Gelatinase matrix metalloproteinase (MMP)-2 and MMP-9 of the umbilical cord blood in preeclampsia. Clin Chem Lab Med 2008; 46: 517–522.

    Article  CAS  PubMed  Google Scholar 

  98. Galewska Z, Romanowicz L, Jaworski S, Bankowski E . Matrix metalloproteinases, MMP-7 and MMP-26, in plasma and serum of control and preeclamptic umbilical cord blood. Eur J Obstet Gynecol Reprod Biol 2010; 150: 152–156.

    Article  CAS  PubMed  Google Scholar 

  99. Fridman R, Toth M, Chvyrkova I, Meroueh SO, Mobeshery S . Cell surface association of matrix metalloproteinase-9 (gelatinase B). Cancer Metastas Rev 2003; 22: 153–166.

    Article  CAS  Google Scholar 

  100. Anacker J, Segerer SE, Hagemann C, Feix S, Kapp M, Bausch R et al. Human decidua and invasive trophoblasts are rich sources of nearly all human matrix metalloproteinases. Mol Hum Reprod 2011; 17: 637–652.

    Article  CAS  PubMed  Google Scholar 

  101. Visse R, Nagase H . Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003; 92: 827–839.

    Article  CAS  PubMed  Google Scholar 

  102. Chaudhary AK, Singh M, Bharti AC, Asotra K, Sundaram S, Mehrotra R . Genetic polymorphisms of matrix metalloproteinases and their inhibitors in potentially malignant and malignant lesions of the head and neck. J Biomed Sci 2010; 17: 10 (3–13).

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Wang A, Rana S, Karumanchi SA . Preeclampsia: the role of angiogenic factors in its pathogenesis. Physiology 2009; 24: 147–158.

    Article  CAS  PubMed  Google Scholar 

  104. Carty DM, Delles C, Dominiczak AF . Novel biomarkers for predicting preeclampsia. Trends Cardiovasc Med 2008; 18: 186–194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A D Blann.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthikeyan, V., Lane, D., Beevers, D. et al. Matrix metalloproteinases and their tissue inhibitors in hypertension-related pregnancy complications. J Hum Hypertens 27, 72–78 (2013). https://doi.org/10.1038/jhh.2012.8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2012.8

Keywords

This article is cited by

Search

Quick links