Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension

Abstract

Systemic arterial stiffness is an indicator of cardiovascular disease and an independent marker of morbidity and cardiovascular mortality. We investigated the association of arterial wave reflections with left ventricular (LV) diastolic dysfunction and their incremental value to other determinants of LV diastolic dysfunction in patients with essential hypertension. In total 143 patients and 20 controls with similar atherosclerotic risk factors were examined by applanation tonometry of the radial artery (Sphygmocor) and echocardiography. Central augmentation index (CAI%) of reflected arterial waves as well as aortic strain (AoS) assessed by echocardiography were estimated. Doppler diastolic abnormalities were defined as proposed by the European Study Group on diastolic heart failure by measurement of E/A ratio (the ratio of the mitral inflow velocities), isovolumic relaxation time, deceleration time and flow propagation velocity. AoS and CAI were impaired in patients compared with controls (4.67±2.94 vs 6.06±4.91% and 145.8±22.7 vs 135.7±20.3%, P<0.01) as well as in patients with LV diastolic dysfunction compared to patients without, (5.52±4.29 vs 10.73±5.77% and 139.5±21.7 vs 124.5±17.0%, P<0.05). The odds ratio (OR) of AoS and CAI for diastolic dysfunction was OR:0.918, 95% confidence interval (CI):0.837–0.99, P=0.04 and OR:1.023, 95%CI:1.023–1.040 P=0.010, respectively. The addition of CAI to the multivariable model including age, LV mass index, AoS and mean arterial pressure increased the power of the model for determination of LV diastolic dysfunction (−2 log likelihood=139.368, change of χ2=4.2, P-value for change=0.04). In untreated patients with newly diagnosed essential hypertension, wave reflections are independent and additive determinants of LV diastolic dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Kannel W, Stokes J . Hypertension as a cardiovascular risk factor. In: Robertson JIS (ed). Handbook of Hypertension: Epidemiology of Hypertension, Vol. 6. Elsevier Science Publishing: Amsterdam, The Netherlands, 1985, pp 15–34.

    Google Scholar 

  2. Laurent S, Boutouyrie P, Roland A, Gautier I, Laloux B, Guize L et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  3. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D et al. European Network for Non-invasive Investigation of Large Arteries. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006; 27: 2588–2605.

    Article  PubMed  Google Scholar 

  4. O'Rourke M, Kelly R . Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 1993; 11: 327–337.

    Article  CAS  PubMed  Google Scholar 

  5. Cameron J, McGrath B, Dart A . Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J Am Coll Cardiol 1998; 32: 1214–1220.

    Article  CAS  PubMed  Google Scholar 

  6. London G, Guerin A . Influence of arterial pulse and reflected waves on blood pressure and cardiac function. Am Heart J 1999; 138: 220–224.

    Article  CAS  PubMed  Google Scholar 

  7. Nichols W, O'Rourke M (eds). McDonald's Blood Flow in Arteries, 4th edn. Edward Arnold: London, 1998, pp 170–222, 284–315, 347–395, 450–476.

    Google Scholar 

  8. Stefanadis C, Stratos C, Boudoulas H, Kourouklis C, Toutouzas P . Distensibility of the ascending aorta: comparison of invasive and noninvasive techniques in healthy men and in men with coronary artery disease. Eur Heart J 1990; 11: 990–996.

    Article  CAS  PubMed  Google Scholar 

  9. Pitsavos C, Toutouzas K, Dernellis J, Skoumas J, Skoumbourdis E, Stefanadis C et al. Aortic stiffness in young patients with heterozygous familial hypercholesterolemia. Am Heart J 1998; 135: 604–608.

    Article  CAS  PubMed  Google Scholar 

  10. Ikonomidis I, Lekakis J, Stamatelopoulos K, Markomihelakis N, Kaklamanis P, Mavrikakis M . Aortic elastic properties and left ventricular diastolic function in patients with Adamantiades–Behcet's disease. J Am Coll Cardiol 2004; 43: 1075–1081.

    Article  PubMed  Google Scholar 

  11. Yano M, Kohno M, Kobayashi S, Obayashi M, Seki K, Ohkusa T et al. Influence of timing and magnitude of arterial wave reflection on left ventricular relaxation. Am J Physiol Heart Circ Physiol 2001; 280: H1846–H1852.

    Article  CAS  PubMed  Google Scholar 

  12. Papaioannou T, Mathioulakis D, Tsangaris S . Simulation of systolic and diastolic left ventricular dysfunction in a mock circulation: the effect of arterial compliance. J Med Eng Technol 2003; 27: 85–90.

    Article  CAS  PubMed  Google Scholar 

  13. Mottram P, Haluska B, Leano R, Carlier S, Case C, Marwick T . Relation of arterial stiffness to diastolic dysfunction in hypertensive heart disease. Heart 2005; 91: 1551–1556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ikonomidis I, Aznaouridis K, Protogerou A, Stamatelopoulos K, Markomihelakis N, Papamichael C et al. Arterial wave reflections are associated with left ventricular diastolic dysfunction in Adamantiades-Behcet's disease. J Card Fail 2006; 12: 458–463.

    Article  PubMed  Google Scholar 

  15. Hammond I, Devereux R, Alderman M, Lutas E, Spitzer M, Crowley J et al. The prevalence and correlates of echocardiographic left ventricular hypertrophy among employed patients with uncomplicated hypertension. J Am Coll Cardiol 1986; 7: 639–650.

    Article  CAS  PubMed  Google Scholar 

  16. Eren M, Gorgulu S, Uslu N, Celik S, Dagdeviren B, Tezel T . Relation between aortic stiffness and left ventricular diastolic function in patients with hypertension, diabetes or both. Heart 2004; 90: 37–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Devereux R, Reichek N . Echocardiographic assessment of left ventricular mass in man. Circulation 1977; 55: 613–618.

    Article  CAS  PubMed  Google Scholar 

  18. Garcia M, Smedira N, Greenberg N, Main M, Firstenberg M, Odabashian J et al. Color M-mode Doppler flow propagation velocity is a preload insensitive index of left ventricular relaxation: animal and human validation. J Am Coll Cardiol 2000; 35: 201–208.

    Article  CAS  PubMed  Google Scholar 

  19. European Study Group on Diastolic Heart Failure. How to diagnose diastolic heart failure. Eur Heart J 1998; 19: 990–1003.

  20. Kasner M, Westermann D, Steendijk P, Gaub R, Wilkenshoff U, Weitmann K et al. Utility of Doppler echocardiography and tissue Doppler imaging in the estimation of diastolic function in heart failure with normal ejection fraction- a comparative Doppler-conductance catheterization study. Circulation 2007; 116: 637–647.

    Article  PubMed  Google Scholar 

  21. Lubien E, DeMaria A, Krishnaswamy P, Clopton P, Koon J, Kazanegra R et al. Utility of B-Natriuretic peptide in detecting diastolic dysfunction: Comparison with Doppler velocity recordings. Circulation 2002; 105: 595–601.

    Article  CAS  PubMed  Google Scholar 

  22. Paulus W, Tschope C, Sanderson J, Rusconi C, Flachskampf F, Rademakers F et al. How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 2007; 28: 2539–2550.

    Article  PubMed  Google Scholar 

  23. Chen C, Nevo E, Fetics B, Pak P, Yin F, Maughan L et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure: validation of generalized transfer function. Circulation 1997; 95: 1827–1836.

    Article  CAS  PubMed  Google Scholar 

  24. Collet D . Modelling Survival Data in Medical Research, 1st edn. Chapman and Hall, CRC Press, 1994, pp 53–106.

  25. Oh J, Hatle L, Tajik A, William C, Little W . Diastolic heart failure can be diagnosed by comprehensive two-dimensional and Doppler echocardiography. J Am Coll Cardiol 2006; 47: 500–506.

    Article  PubMed  Google Scholar 

  26. Weber T, Auer J, O'Rourke M, Punzengruber C, Kvas E, Eber B . Prolonged mechanical systole and increased arterial wave reflections in diastolic dysfunction. Heart 2006; 92: 1616–1622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen C, Nakayama M, Nevo E, Fetics B, Maughan W, Kass D . Coupled systolic-ventricular and vascular stiffening with age: implications for pressure regulation and cardiac reserve in the elderly. J Am Coll Cardiol 1998; 32: 1221–1227.

    Article  CAS  PubMed  Google Scholar 

  28. Borlaug B, Melenovsky V, Redfield M, Kessler K, Chang H, Abraham TP et al. Impact of arterial load and loading sequence on left ventricular tissue velocities in humans. J Am Coll Cardiol 2007; 50: 1570–1577.

    Article  PubMed  Google Scholar 

  29. Brutsaert D, Sys S . Relaxation and diastole of the heart. Physiol Rev 1989; 69: 1228–1315.

    Article  CAS  PubMed  Google Scholar 

  30. Iketani T, Takazawa K, Ibukiyama C . The influence of changes in loading patterns on left ventricular relaxation in humans. Jpn Circ J 1998; 62: 581–585.

    Article  CAS  PubMed  Google Scholar 

  31. Dimitrow P, Galderisi M, Rigo F . The non-invasive documentation of coronary microcirculation impairment: role of transthoracic echocardiography. Cardiovasc Ultrasound 2005; 3: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vinereanu D, Nicolaides E, Boden L, Payne N, Jones C, Fraser A . Conduit arterial stiffness is associated with impaired left ventricular subendocardial function [Scientific Letter]. Heart 2003; 89: 449–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Leite-Moreira A, Correia-Pinto J, Gillebert T . Afterload induced changes in myocardial relaxation: a mechanism for diastolic dysfunction. Cardiovasc Res 1999; 43: 344–353.

    Article  CAS  PubMed  Google Scholar 

  34. Buckberg G, Fixler D, Archi J, Hoffman J . Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 1972; 30: 67–81.

    Article  CAS  PubMed  Google Scholar 

  35. Watanabe H, Ohtsuka S, Kakihana M, Sugjshita Y . Coronary circulation in dogs with an experimental decrease in aortic compliance. J Am Coll Cardiol 1993; 21: 1497–1506.

    Article  CAS  PubMed  Google Scholar 

  36. Ikonomidis I, Mazarakis A, Papadopoulos C, Patsouras N, Kalfarentzos F, Lekakis J et al. Weight loss after bariatric surgery improves aortic elastic properties and left ventricular function in individuals with morbid obesity: a 3-year follow-up study. J Hypertens 2007; 25: 439–447.

    Article  CAS  PubMed  Google Scholar 

  37. Taylor M . Wave travel in arteries and the design of the cardiovascular system. In: Attinger EO (ed). Pulsatile Blood Flow. McGraw Hill: New York, NY, USA, 1964, pp 343–347.

    Google Scholar 

  38. Bank A, Kaiser D . Smooth muscle relaxation-effect on arterial compliance, distensibility, elastic modulus, and pulse wave velocity. Hypertension 1998; 32: 356–359.

    Article  CAS  PubMed  Google Scholar 

  39. Safar M, London G, Asmar R, Hugues C, Laurent S . An indirect approach for the study of the elastic modulus of the brachial artery in patients with essential hypertension. Cardiovasc Res 1986; 20: 563–567.

    Article  CAS  PubMed  Google Scholar 

  40. O'Rourke M, Safar M, Dzau V (eds). Arterial Vasodilation: Mechanisms and Therapy. Edward Arnold/Philadelphia, Lea & Febiger: London, 1993, pp 78–89, 91–101, 149–163.

    Google Scholar 

  41. Safar M, Thomas F, Blacher J, Nzietchueng R, Bureau J, Pannier B et al. Metabolic syndrome and age-related progression of aortic stiffness. J Am Coll Cardiol 2006; 47: 72–75.

    Article  PubMed  Google Scholar 

  42. Wilkinson I, Qasem A, McEniery C, Webb D, Avolio A, Cockcroft J . Nitric oxide regulates local arterial distensibility in vivo. Circulation 2002; 105: 213–217.

    Article  CAS  PubMed  Google Scholar 

  43. Mahmud A, Feely J . Arterial stiffness and the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst 2004; 5: 102–108.

    Article  CAS  PubMed  Google Scholar 

  44. Nakhai-Pour H, Grobbee D, Bots M, Muller M, Van der Schouw Y . C-reactive protein and aortic stiffness and wave reflection in middle-aged and elderly men from the community. J Hum Hypertens 2007; 21: 949–955.

    Article  CAS  PubMed  Google Scholar 

  45. Seo H, Kang T, Park S, Park H, Ko Y, Choi D et al. Insulin resistance is associated with arterial stiffness in nondiabetic hypertensives independent of metabolic status. Hypertens Res 2005; 28: 945–951.

    Article  PubMed  Google Scholar 

  46. Lekakis J, Ikonomidis I, Protogerou A, Papaioannou T, Stamatelopoulos K, Papamichael C et al. Arterial wave reflection is associated with severity of extracoronary atherosclerosis in patients with coronary artery disease. Eur J Cardiovasc Prev Rehabil 2006; 13: 236–242.

    Article  PubMed  Google Scholar 

  47. Williams B, Lacy P, Thom S, Cruickshank K, Stanton A, Collier D, et al., CAFE Investigators; ASCOT Investigators; CAFE Steering Committee and Writing Committee. Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 2006; 113: 1213–1225.

    Article  CAS  PubMed  Google Scholar 

  48. Nichols WW . Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005; 18 (1 Pt 2): 3S–10S.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Ikonomidis.

Additional information

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikonomidis, I., Tzortzis, S., Papaioannou, T. et al. Incremental value of arterial wave reflections in the determination of left ventricular diastolic dysfunction in untreated patients with essential hypertension. J Hum Hypertens 22, 687–698 (2008). https://doi.org/10.1038/jhh.2008.39

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jhh.2008.39

Keywords

This article is cited by

Search

Quick links