Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Predictors of polycyclic aromatic hydrocarbon exposure and internal dose in inner city Baltimore children


Polycyclic aromatic hydrocarbons (PAHs), the by-products of incomplete combustion of organic materials, are commonly found on particulate matter (PM) and have been associated with the development of asthma and asthma exacerbation in urban populations. We examined time spent in the home and outdoors as predictors of exposures to airborne PAHs and measured urinary 1-hydroxypyrene-glucuronide (1-OHPG) as internal dose of PAHs in 118 children aged 5–12 years from Baltimore, MD. During weeklong periods (Saturday–Saturday) in each of four seasons: daily activities were assessed using questionnaires, indoor air nicotine and PM concentrations were monitored, and urine specimens were collected on Tuesday (day 3) and Saturday (day 7) for measurement of 1-OHPG. Time spent in non-smoking homes was associated with significantly decreased 1-OHPG concentration in urine (β=−0.045, 95% CI (−0.076, −0.013)), and secondhand smoke (SHS) exposures modified these associations, with higher urinary 1-OHPG concentrations in children spending time in smoking homes than non-smoking homes (P-value for interaction=0.012). Time spent outdoors was associated with increased urinary 1-OHPG concentrations (β=0.097, 95% CI (0.037, 0.157)) in boys only. Our results suggest that SHS and ambient (outdoor) air pollution contribute to internal dose of PAHs in inner city children.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2


  1. 1

    Dubowsky SD, Wallace LA, Buckley TJ . The contribution of traffic to indoor concentrations of polycyclic aromatic hydrocarbons. J Expo Anal Environ Epidemiol 1999; 9: 312–321.

    CAS  Article  Google Scholar 

  2. 2

    International Agency for the Research of Cancer (IARC). IARC monographs on the evaluation of carcinogenic risks to humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures, volume 92, 2010. Available at: Accessed March 21 2014.

  3. 3

    Agency for Toxic Substances and Disease Registry (ATSDR). Toxicological profile for polycyclic aromatic hydrocarbons. US Department of Health and Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, 1995. Available at: Accessed 14 March 2014.

  4. 4

    Dimashki M, Lim LH, Harrison RM, Harrad S . Temporal trends, temperature dependence, and relative reactivity of atmospheric polycyclic aromatic hydrocarbons. Environ Sci Technol 2001; 35: 2264–2267.

    CAS  Article  Google Scholar 

  5. 5

    Larsen RK 3rd, Baker JE . Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere: a comparison of three methods. Environ Sci Technol 2003; 37: 1873–1881.

    CAS  Article  Google Scholar 

  6. 6

    Miller RL, Garfinkel R, Horton M, Camann D, Perera FP, Whyatt RM et al. Polycyclic aromatic hydrocarbons, environmental tobacco smoke, and respiratory symptoms in an inner-city birth cohort. Chest 2004; 126: 1071–1078.

    CAS  Article  Google Scholar 

  7. 7

    Jung KH, Hsu SI, Yan B, Moors K, Chillrud SN, Ross J et al. Childhood exposure to fine particulate matter and black carbon and the development of new wheeze between ages 5 and 7 in an urban prospective cohort. Environ Int 2012; 45: 44–50.

    CAS  Article  Google Scholar 

  8. 8

    Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 2003; 111: 201–205.

    CAS  Article  Google Scholar 

  9. 9

    Perera FP, Rauh V, Whyatt RM, Tsai WY, Tang D, Diaz D et al. Effect of prenatal exposure to airborne polycyclic aromatic hydrocarbons on neurodevelopment in the first 3 years of life among inner-city children. Environ Health Perspect 2006; 114: 1287–1292.

    CAS  Article  Google Scholar 

  10. 10

    Squadrito GL, Cueto R, Dellinger B, Pryor WA . Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radic Biol Med 2001; 31: 1132–1138.

    CAS  Article  Google Scholar 

  11. 11

    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P et al. The National Human Activity Pattern Survey (NHAPS): a resource for assessing exposure to environmental pollutants. J Expo Anal Environ Epidemiol 2001; 11: 231–252.

    CAS  Article  Google Scholar 

  12. 12

    Wallace LA, Mitchell H, O'Connor GT, Neas L, Lippmann M, Kattan M et al. Particle concentrations in inner-city homes of children with asthma: the effect of smoking, cooking, and outdoor pollution. Environ Health Perspect 2003; 111: 1265–1272.

    CAS  Article  Google Scholar 

  13. 13

    Koenig JQ, Mar TF, Allen RW, Jansen K, Lumley T, Sullivan JH et al. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ Health Perspect 2005; 113: 499–503.

    CAS  Article  Google Scholar 

  14. 14

    Choi H, Perera F, Pac A, Wang L, Flak E, Mroz E et al. Estimating individual-level exposure to airborne polycyclic aromatic hydrocarbons throughout the gestational period based on personal, indoor, and outdoor monitoring. Environ Health Perspect 2008; 116: 1509–1518.

    CAS  Article  Google Scholar 

  15. 15

    Jedrychowski W, Galas A, Pac A, Flak E, Camman D, Rauh V et al. Prenatal ambient air exposure to polycyclic aromatic hydrocarbons and the occurrence of respiratory symptoms over the first year of life. Eur J Epidemiol 2005; 20: 775–782.

    CAS  Article  Google Scholar 

  16. 16

    Rosa MJ, Jung KH, Perzanowski MS, Kelvin EA, Darling KW, Camann DE et al. Prenatal exposure to polycyclic aromatic hydrocarbons, environmental tobacco smoke and asthma. Respir Med 2011; 105: 869–876.

    Article  Google Scholar 

  17. 17

    Tonne CC, Whyatt RM, Camann DE, Perera FP, Kinney PL . Predictors of personal polycyclic aromatic hydrocarbon exposures among pregnant minority women in New York City. Environ Health Perspect 2004; 112: 754–759.

    CAS  Article  Google Scholar 

  18. 18

    Buchet JP, Gennart JP, Mercado-Calderon F, Delavignette JP, Cupers L, Lauwerys R . Evaluation of exposure to polycyclic aromatic hydrocarbons in a coke production and a graphite electrode manufacturing plant: assessment of urinary excretion of 1-hydroxypyrene as a biological indicator of exposure. Br J Ind Med 1992; 49: 761–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Strickland PT, Kang D, Bowman ED, Fitzwilliam A, Downing TE, Rothman N et al. Identification of 1-hydroxypyrene glucuronide as a major pyrene metabolite in human urine by synchronous fluorescence spectroscopy and gas chromatography-mass spectrometry. Carcinogenesis 1994; 15: 483–487.

    CAS  Article  Google Scholar 

  20. 20

    Strickland P, Kang D . Urinary 1-hydroxypyrene and other PAH metabolites as biomarkers of exposure to environmental PAH in air particulate matter. Toxicol Lett 1999; 108: 191–199.

    CAS  Article  Google Scholar 

  21. 21

    Jongeneelen FJ . Benchmark guideline for urinary 1-hydroxypyrene as biomarker of occupational exposure to polycyclic aromatic hydrocarbons. Ann Occup Hyg 2001; 45: 3–13.

    CAS  Article  Google Scholar 

  22. 22

    Hansen AM, Raaschou-Nielsen O, Knudsen LE . Urinary 1-hydroxypyrene in children living in city and rural residences in Denmark. Sci Total Environ 2005; 347: 98–105.

    CAS  Article  Google Scholar 

  23. 23

    Singh R, Tucek M, Maxa K, Tenglerova J, Weyand EH . A rapid and simple method for the analysis of 1-hydroxypyrene glucuronide: a potential biomarker for polycyclic aromatic hydrocarbon exposure. Carcinogenesis 1995; 16: 2909–2915.

    CAS  Article  Google Scholar 

  24. 24

    Strickland P, Kang D, Sithisarankul P . Polycyclic aromatic hydrocarbon metabolites in urine as biomarkers of exposure and effect. Environ Health Perspect 1996; 104 (Suppl 5): 927–932.

    CAS  Article  Google Scholar 

  25. 25

    Kang D, Lee KH, Lee KM, Kwon HJ, Hong YC, Cho SH et al. Design issues in cross-sectional biomarkers studies: urinary biomarkers of PAH exposure and oxidative stress. Mutat Res 2005; 592: 138–146.

    CAS  Article  Google Scholar 

  26. 26

    Lee J, Kang D, Lee KH, Ichiba M, Zhang J, Tomokuni K et al. Influence of GSTM1 genotype on association between aromatic DNA adducts and urinary PAH metabolites in incineration workers. Mutat Res 2002; 514: 213–221.

    CAS  Article  Google Scholar 

  27. 27

    Lee KH, Vermeulen R, Lenters V, Cho SH, Strickland PT, Kang D . Determinants of urinary 1-hydroxypyrene glucuronide in South Korean children. Int Arch Occup Environ Health 2009; 82: 961–968.

    CAS  Article  Google Scholar 

  28. 28

    Chien YC, Yeh CT . Amounts and proportion of administered pyrene dose excreted as urinary 1-hydroxypyrene after dietary exposure to polycyclic aromatic hydrocarbons. Arch Toxicol 2010; 84: 767–776.

    CAS  Article  Google Scholar 

  29. 29

    Deziel NC, Wei WQ, Abnet CC, Qiao YL, Sunderland D, Ren JS et al. A multi-day environmental study of polycyclic aromatic hydrocarbon exposure in a high-risk region for esophageal cancer in China. J Expo Sci Environ Epidemiol 2013; 23: 52–59.

    CAS  Article  Google Scholar 

  30. 30

    Lai CH, Jaakkola JJ, Chuang CY, Liou SH, Lung SC, Loh CH et al. Exposure to cooking oil fumes and oxidative damages: a longitudinal study in Chinese military cooks. J Expo Sci Environ Epidemiol 2013; 23: 94–100.

    CAS  Article  Google Scholar 

  31. 31

    Prado GF, Zanetta DM, Arbex MA, Braga AL, Pereira LA, de Marchi MR et al. Burnt sugarcane harvesting: particulate matter exposure and the effects on lung function, oxidative stress, and urinary 1-hydroxypyrene. Sci Total Environ 2012; 437: 200–208.

    CAS  Article  Google Scholar 

  32. 32

    Huang W, Grainger J, Patterson DG Jr, Turner WE, Caudill SP, Needham LL et al. Comparison of 1-hydroxypyrene exposure in the US population with that in occupational exposure studies. Int Arch Occup Environ Health 2004; 77: 491–498.

    CAS  Article  Google Scholar 

  33. 33

    (CDC) Centers for Disease Control and Prevention, Department of Health and Human Services. Third national report on human exposure to environmental chemicals [revised] 2005.

  34. 34

    Sul D, Ahn R, Im H, Oh E, Kim JH, Kim JG et al. Korea National Survey for Environmental Pollutants in the human body 2008: 1-hydroxypyrene, 2-naphthol, and cotinine in urine of the Korean population. Environ Res 2012; 118: 25–30.

    CAS  Article  Google Scholar 

  35. 35

    Fiala Z, Vyskocil A, Krajak V, Viau C, Ettlerova E, Bukac J et al. Environmental exposure of small children to polycyclic aromatic hydrocarbons. Int Arch Occup Environ Health 2001; 74: 411–420.

    CAS  Article  Google Scholar 

  36. 36

    Bostrom CE, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 2002; 110 (Suppl 3): 451–488.

    CAS  Article  Google Scholar 

  37. 37

    Jongeneelen FJ . Biological monitoring of environmental exposure to polycyclic aromatic hydrocarbons; 1-hydroxypyrene in urine of people. Toxicol Lett 1994; 72: 205–211.

    CAS  Article  Google Scholar 

  38. 38

    van Wijnen JH, Slob R, Jongmans-Liedekerken G, van de Weerdt RH, Woudenberg F . Exposure to polycyclic aromatic hydrocarbons among Dutch children. Environ Health Perspect 1996; 104: 530–534.

    CAS  Article  Google Scholar 

  39. 39

    Siwinska E, Mielzynska D, Bubak A, Smolik E . The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. Mutat Res 1999; 445: 147–153.

    CAS  Article  Google Scholar 

  40. 40

    Mucha AP, Hryhorczuk D, Serdyuk A, Nakonechny J, Zvinchuk A, Erdal S et al. Urinary 1-hydroxypyrene as a biomarker of PAH exposure in 3-year-old Ukrainian children. Environ Health Perspect 2006; 114: 603–609.

    CAS  Article  Google Scholar 

  41. 41

    Tuntawiroon J, Mahidol C, Navasumrit P, Autrup H, Ruchirawat M . Increased health risk in Bangkok children exposed to polycyclic aromatic hydrocarbons from traffic-related sources. Carcinogenesis 2007; 28: 816–822.

    CAS  Article  Google Scholar 

  42. 42

    Martinez-Salinas RI, Elena Leal M, Batres-Esquivel LE, Domínguez-Cortinas G, Calderón J, Díaz-Barriga F et al. Exposure of children to polycyclic aromatic hydrocarbons in Mexico: assessment of multiple sources. Int Arch Occup Environ Health 2010; 83: 617–623.

    CAS  Article  Google Scholar 

  43. 43

    Fan R, Wang D, Mao C, Ou S, Lian Z, Huang S et al. Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2'-deoxyguanosine in Guangzhou, China. Environ Int 2012; 42: 53–58.

    CAS  Article  Google Scholar 

  44. 44

    Bae S, Pan XC, Kim SY, Park K, Kim YH, Kim H et al. Exposures to particulate matter and polycyclic aromatic hydrocarbons and oxidative stress in schoolchildren. Environ Health Perspect 2010; 118: 579–583.

    CAS  Article  Google Scholar 

  45. 45

    Perera FP, Illman SM, Kinney PL, Whyatt RM, Kelvin EA, Shepard P et al. The challenge of preventing environmentally related disease in young children: community-based research in New York City. Environ Health Perspect 2002; 110: 197–204.

    Article  Google Scholar 

  46. 46

    Breysse PN, Buckley TJ, Williams D, Beck CM, Jo SJ, Merriman B et al. Indoor exposures to air pollutants and allergens in the homes of asthmatic children in inner-city Baltimore. Environ Res 2005; 98: 167–176.

    CAS  Article  Google Scholar 

  47. 47

    Simons E, Curtin-Brosnan J, Buckley T, Breysse P, Eggleston PA . Indoor environmental differences between inner city and suburban homes of children with asthma. J Urban Health 2007; 84: 577–590.

    Article  Google Scholar 

  48. 48

    McCormack MC, Breysse PN, Matsui EC, Hansel NN, Williams D, Curtin-Brosnan J et al. In-home particle concentrations and childhood asthma morbidity. Environ Health Perspect 2009; 117: 294–298.

    Article  Google Scholar 

  49. 49

    Miranda ML, Edwards SE, Keating MH, Paul CJ . Making the environmental justice grade: the relative burden of air pollution exposure in the United States. Int J Environ Res Public Health 2011; 8: 1755–1771.

    Article  Google Scholar 

  50. 50

    Hansel NN, Breysse PN, McCormack MC, Matsui EC, Curtin-Brosnan J, Williams DL et al. A longitudinal study of indoor nitrogen dioxide levels and respiratory symptoms in inner-city children with asthma. Environ Health Perspect 2008; 116: 1428–1432.

    CAS  Article  Google Scholar 

  51. 51

    Butz AM, Halterman JS, Bellin M, Tsoukleris M, Donithan M, Kub J et al. Factors associated with second-hand smoke exposure in young inner-city children with asthma. J Asthma 2011; 48: 449–457.

    CAS  Article  Google Scholar 

  52. 52

    Hansel NN, Matsui EC, Rusher R, McCormack MC, Curtin-Brosnan J, Peng RD et al. Predicting future asthma morbidity in preschool inner-city children. J Asthma 2011; 48: 797–803.

    Article  Google Scholar 

  53. 53

    Matsui EC, Hansel NN, Aloe C, Schiltz AM, Peng RD, Rabinovitch N et al. Indoor pollutant exposures modify the effect of airborne endotoxin on asthma in urban children. Am J Respir Crit Care Med 2013; 188: 1210–1215.

    CAS  Article  Google Scholar 

  54. 54

    Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL . Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005; 113: 192–200.

    CAS  Article  Google Scholar 

  55. 55

    Jung KH, Patel MM, Moors K, Kinney PL, Chillrud SN, Whyatt R et al. Effects of heating season on residential indoor and outdoor polycyclic aromatic hydrocarbons, black carbon, and particulate matter in an urban birth cohort. Atmos Environ 2010; 44: 4545–4552.

    CAS  Article  Google Scholar 

  56. 56

    Kim JH, Kim JK, Son BK, Oh JE, Lim DH, Lee KH et al. Effects of air pollutants on childhood asthma. Yonsei Med J 2005; 46 (2): 239–244.

    CAS  Article  Google Scholar 

  57. 57

    Hu SW, Chan YJ, Hsu HT, Wu KY, Chang Chien GP, Shie RH et al. Urinary levels of 1-hydroxypyrene in children residing near a coal-fired power plant. Environ Res 2011; 111: 1185–1191.

    CAS  Article  Google Scholar 

  58. 58

    Kang JW, Cho SH, Kim H, Lee CH . Correlation of urinary 1-hydroxypyrene and 2-naphthol with total suspended particulates in ambient air in municipal middle-school students in Korea. Arch Environ Health 2002; 57: 377–382.

    CAS  Article  Google Scholar 

  59. 59

    Centers for Disease Control and Prevention (CDC). Vital signs: nonsmokers' exposure to secondhand smoke—United States, 1999-2008. MMWR Morb Mortal Wkly Rep 2010; 59: 6.

    Google Scholar 

  60. 60

    Suwan-ampai P, Navas-Acien A, Strickland PT, Agnew J . Involuntary tobacco smoke exposure and urinary levels of polycyclic aromatic hydrocarbons in the United States, 1999 to 2002. Cancer Epidemiol Biomark Prev 2009; 18: 884–893.

    CAS  Article  Google Scholar 

  61. 61

    Yoon HS, Lee KM, Lee KH, Kim S, Choi K, Kang D . Polycyclic aromatic hydrocarbon (1-OHPG and 2-naphthol) and oxidative stress (malondialdehyde) biomarkers in urine among Korean adults and children. Int J Hyg Environ Health 2012; 215: 458–464.

    CAS  Article  Google Scholar 

  62. 62

    McCormack MC, Breysse PN, Hansel NN, Matsui EC, Tonorezos ES, Curtin-Brosnan J et al. Common household activities are associated with elevated particulate matter concentrations in bedrooms of inner-city Baltimore pre-school children. Environ Res 2008; 106: 148–155.

    CAS  Article  Google Scholar 

  63. 63

    Srogi K . Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environ Chem Lett 2007; 5: 35.

    Article  Google Scholar 

  64. 64

    Vyskocil A, Fiala Z, Chenier VV, Krajak L, Ettlerova E, Bukac J et al. Assessment of multipathway exposure of small children to PAH. Environ Toxicol Pharmacol 2000; 8: 111–118.

    CAS  Article  Google Scholar 

Download references


This research was supported by National Institutes of Health Grants P50ES015903 and P01ES018176; and Environmental Protection Agency Grants RD83451001 and RD83615201. Dr. Peters was supported by a Bloomberg School of Public Health Diversity and Health Disparities Fellowship, and a National Institute of Occupational Safety and Health, Education and Research Center Training Grant, Predoctoral Fellowship (T42-OH008428).

Author information



Corresponding author

Correspondence to Kamau O Peters.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peters, K., Williams, D., Abubaker, S. et al. Predictors of polycyclic aromatic hydrocarbon exposure and internal dose in inner city Baltimore children. J Expo Sci Environ Epidemiol 27, 290–298 (2017).

Download citation


  • polycyclic aromatic hydrocarbons
  • secondhand smoke
  • 1-hydroxypyrene-glucuronide

Further reading


Quick links