Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics

Abstract

Despite extensive literature on their potential adverse health effects, there is a lack of information on human dermal exposure to organic flame retardant chemicals (FRs). This study applies an in vitro physiologically based extraction test to provide new insights into the dermal bioaccessibility of various FRs from indoor dust to synthetic sweat/sebum mixture (SSSM). The bioaccessible fractions of α-, β- and γ-hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) to 1:1 (sweat/sebum) mixture were 41%, 47%, 50% and 40%, respectively. For Tris-2-chloroethyl phosphate (TCEP), tris (1-chloro-2-propyl) phosphate (TCIPP) and tris-1,3-dichloropropyl phosphate (TDCIPP), bioaccessible fractions were 10%, 17% and 19%. Composition of the SSSM and compound-specific physicochemical properties were the major factors influencing the bioaccessibility of target FRs. Except for TBBPA, the presence of cosmetics (moisturising cream, sunscreen lotion, body spray and shower gel) had a significant effect (P<0.05) on the bioaccessibility of the studied FRs. The presence of cosmetics decreased the bioaccessibility of HBCDs from indoor dust, whereas shower gel and sunscreen lotion enhanced the bioaccessibility of target PFRs. Our bioaccessibility data were applied to estimate the internal exposure of UK adults and toddlers to the target FRs via dermal contact with dust. Our worst-case scenario exposure estimates fell far below available health-based limit values for TCEP, TCIPP and TDCIPP. However, future research may erode the margin of safety for these chemicals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

References

  1. Ghosh R, Hageman KJ, Björklund E . Selective pressurized liquid extraction of three classes of halogenated contaminants in fish. J Chromatogra A 2011; 1218: 7242–7247.

    Article  CAS  Google Scholar 

  2. van der Veen I, de Boer J . Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 2012; 88: 1119–1153.

    Article  CAS  Google Scholar 

  3. Ali N, Harrad S, Goosey E, Neels H, Covaci A . "Novel" brominated flame retardants in Belgian and UK indoor dust: implications for human exposure. Chemosphere 2011; 83: 1360–1365.

    Article  CAS  Google Scholar 

  4. van Leeuwen SP, de Boer J . Brominated flame retardants in fish and shellfish - levels and contribution of fish consumption to dietary exposure of Dutch citizens to HBCD. Mol Nutr Food Res 2008; 52: 194–203.

    Article  CAS  Google Scholar 

  5. Abdallah MA, Pawar G, Harrad S . Evaluation of in vitro vs in vivo methods for assessment of dermal absorption of organic flame retardants: a review. Environ Int 2015; 74: 13–22.

    Article  CAS  Google Scholar 

  6. Fitzpatrick D, Corish J, Hayes B . Modelling skin permeability in risk assessment—the future. Chemosphere 2004; 55: 1309–1314.

    Article  CAS  Google Scholar 

  7. Chen L, Han L, Lian G . Recent advances in predicting skin permeability of hydrophilic solutes. Adv Drug Deliv Rev 2013; 65: 295–305.

    Article  CAS  Google Scholar 

  8. Anissimov YG, Jepps OG, Dancik Y, Roberts MS . Mathematical and pharmacokinetic modelling of epidermal and dermal transport processes. Adv Drug Deliv Rev 2013; 65: 169–190.

    Article  CAS  Google Scholar 

  9. Van de Sandt JJ, Dellarco M, Van Hemmen JJ . From dermal exposure to internal dose. J Expo Sci Environ Epidemiol 2007; 17 (Suppl 1): S38–S47.

    Article  CAS  Google Scholar 

  10. Lorber M . Exposure of Americans to polybrominated diphenyl ethers. J Expo Sci Env Epid 2008; 18: 2–19.

    Article  CAS  Google Scholar 

  11. Abdallah MA-E, Harrad S . Tetrabromobisphenol-A, hexabromocyclododecane and its degradation products in UK human milk: relationship to external exposure. Environ Int 2011; 37: 443–448.

    Article  CAS  Google Scholar 

  12. Stefaniak AB, Duling MG, Geer L, Virji MA . Dissolution of the metal sensitizers Ni, Be, Cr in artificial sweat to improve estimates of dermal bioaccessibility. Environ Sci Process Impacts 2014; 16: 341–351.

    Article  CAS  Google Scholar 

  13. Hedberg Y, Midander K, Wallinder IO . Particles, sweat, and tears: a comparative study on bioaccessibility of ferrochromium alloy and stainless steel particles, the pure metals and their metal oxides, in simulated skin and eye contact. Integr Environ Assess Manag 2010; 6: 456–468.

    Article  CAS  Google Scholar 

  14. Kulthong K, Srisung S, Boonpavanitchakul K, Kangwansupamonkon W, Maniratanachote R . Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part Fibre Toxicol 2010; 7: 8.

    Article  Google Scholar 

  15. Duling M, Stefaniak A, Lawrence R, Chipera S, Abbas Virji M . Release of beryllium from mineral ores in artificial lung and skin surface fluids. Environ Geochem Health 2012; 34: 313–322.

    Article  CAS  Google Scholar 

  16. Hillwalker WE, Anderson KA . Bioaccessibility of metals in alloys: evaluation of three surrogate biofluids. Environ Pollut 2014; 185: 52–58.

    Article  CAS  Google Scholar 

  17. Ertl H, Butte W . Bioaccessibility of pesticides and polychlorinated biphenyls from house dust: in-vitro methods and human exposure assessment. J Expo Sci Env Epid 2012; 22: 574–583.

    Article  CAS  Google Scholar 

  18. Ruby MV, Davis A, Schoof R, Eberle S, Sellstone CM . Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environ Sci Technol 1996; 30: 422–430.

    Article  CAS  Google Scholar 

  19. Abdallah MA, Tilston E, Harrad S, Collins C . In vitro assessment of the bioaccessibility of brominated flame retardants in indoor dust using a colon extended model of the human gastrointestinal tract. J Environ Monit 2012; 14: 3276–3283.

    Article  Google Scholar 

  20. Buckley WR, Lewis CE . The "ruster" in industry. J Occup Med 1960; 2: 23–31.

    CAS  PubMed  Google Scholar 

  21. Nicolaides N . Skin lipids: their biochemical uniqueness. Science 1974; 186: 19–26.

    Article  CAS  Google Scholar 

  22. Stefaniak AB, Harvey CJ . Artificial skin surface film liquids. In: Google Patents, 2008. Available at: http://www.google.com/patents/US20080311613.

  23. Lane ME . Skin penetration enhancers. Int J Pharm 2013; 447: 12–21.

    Article  CAS  Google Scholar 

  24. Pont AR, Charron AR, Brand RM . Active ingredients in sunscreens act as topical penetration enhancers for the herbicide 2,4-dichlorophenoxyacetic acid. Toxicol Appl Pharmacol 2004; 195: 348–354.

    Article  CAS  Google Scholar 

  25. Walters KA, Brain KR, Howes D, James VJ, Kraus AL, Teetsel NM et al. Percutaneous penetration of octyl salicylate from representative sunscreen formulations through human skin in vitro. Food Chem Toxicol 1997; 35: 1219–1225.

    Article  CAS  Google Scholar 

  26. Abdallah MA, Harrad S, Covaci A . Hexabromocyclododecanes and tetrabromobisphenol-A in indoor air and dust in Birmingham, U.K: implications for human exposure. Environ Sci Technol 2008; 42: 6855–6861.

    Article  CAS  Google Scholar 

  27. Brommer S, Harrad S, Van den Eede N, Covaci A . Concentrations of organophosphate esters and brominated flame retardants in German indoor dust samples. J Environ Monitor 2012; 14: 2482–2487.

    Article  CAS  Google Scholar 

  28. Stefaniak AB, Harvey CJ . Dissolution of materials in artificial skin surface film liquids. Toxicol in Vitro 2006; 20: 1265–1283.

    Article  CAS  Google Scholar 

  29. Abdallah MA, Uchea C, Chipman JK, Harrad S . Enantioselective biotransformation of hexabromocyclododecane by in vitro rat and trout hepatic sub-cellular fractions. Environ Sci Technol 2014; 48: 2732–2740.

    Article  CAS  Google Scholar 

  30. Abdallah MA, Covaci A . Organophosphate flame retardants in indoor dust from Egypt: implications for human exposure. Environ Sci Technol 2014; 48: 4782–4789.

    Article  CAS  Google Scholar 

  31. Qiao GL, Brooks JD, Riviere JE . Pentachlorophenol dermal absorption and disposition from soil in swine: effects of occlusion and skin microorganism inhibition. Toxicol Appl Pharm 1997; 147: 234–246.

    Article  CAS  Google Scholar 

  32. Williams RL, Reifenrath WG, Krieger RI . Artificial sweat enhances dermal transfer of chlorpyrifos from treated nylon carpet fibers. J Environ Sci Heal B 2005; 40: 535–543.

    Article  Google Scholar 

  33. Fang M, Stapleton HM . Evaluating the bioaccessibility of flame retardants in house dust using an in vitro Tenax bead-assisted sorptive physiologically based method. Environ Sci Technol 2014; 48: 13323–13330.

    Article  CAS  Google Scholar 

  34. Brommer S . Characterising human exposure to organophosphate ester flame retardants. PhD thesis, University of Birmingham, 2014. Available at: http://etheses.bham.ac.uk/5292/.

  35. USEPA. Exposure factors handbook, 2011. Available at: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252.

  36. OEHHA Office of Environmental Health Hazard Assessment, State of California, Environmental Protection Agency. Safe drinking water and toxic enforcement act of 1986, PROPOSITION 65, 2015. Available at: http://oehha.ca.gov/prop65/pdf/safeharbor081513.pdf.

  37. Ali N, Dirtu AC, Eede NV, Goosey E, Harrad S, Neels H et al. Occurrence of alternative flame retardants in indoor dust from New Zealand: indoor sources and human exposure assessment. Chemosphere 2012; 88: 1276–1282.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007-2013 under Grant Agreement No. 316665 (A-TEAM) and Grant Agreement No. 327232 (ADAPT). E Villaverde de Sáa also acknowledges funding from the Spanish Ministry of Science and Innovation (FPI Grant BES-2011-047887).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart Harrad.

Additional information

Supplementary Information accompanies the paper on the Journal of Exposure Science and Environmental Epidemiology website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pawar, G., Abdallah, ME., de Sáa, E. et al. Dermal bioaccessibility of flame retardants from indoor dust and the influence of topically applied cosmetics. J Expo Sci Environ Epidemiol 27, 100–105 (2017). https://doi.org/10.1038/jes.2015.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2015.84

Keywords

  • BFRs
  • bioaccessibility
  • cosmetics
  • dermal exposure
  • indoor dust
  • PFRs

This article is cited by

Search

Quick links