Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure

Abstract

Chronic exposure to arsenic (As) in food and water is a significant public health problem. Person-specific aggregate exposure is difficult to collect and modeling based on limited food As residue databases is of uncertain reliability. Two cross-sectional population exposure studies, the National Human Exposure Assessment Survey-Arizona and Arizona Border Survey, had a combined total of 252 subjects with diet, water, and urinary As data. Total As was measured in 24-h duplicate diet samples and modeled using 24-h diet diaries in conjunction with several published food surveys of As. Two-stage regression was used to assess the effects of dietary As on urinary total As (uAs): (1) generalized linear mixed models of uAs above versus below the limit of detection (LOD); and (2) restricted models limited to those subjects with uAs>LOD, using bootstrap sampling and mixed models adjusted for age, sex, body mass index, ethnicity, current smoking, and As intake from drinking and cooking water. In restricted models, measured and modeled estimates were significant predictors of uAs. Modeled dietary As based on Total Diet Study mean residues greatly underestimated the dietary intake. In households with tap water As ≤10 p.p.b., over 93% of total arsenic exposure was attributable to diet.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hopenhayn-Rich C, Biggs ML, Fuchs A, Bergoglio R, Tello EE, Nicolli H et al. Bladder cancer mortality associated with arsenic in drinking water in Argentina. Epidemiology 1996; 7 (2): 117–124.

    Article  CAS  PubMed  Google Scholar 

  2. Smith AH, Marshall G, Yuan Y, Ferreccio C, Liaw J, von Ehrenstein O et al. Increased mortality from lung cancer and bronchiectasis in young adults after exposure to arsenic in utero and in early childhood. Environ Health Perspect 2006; 114 (8): 1293–1296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meliker JR, Wahl RL, Cameron LL, Nriagu JO . Arsenic in drinking water and cerebrovascular disease, diabetes mellitus, and kidney disease in Michigan: a standardized mortality ratio analysis. Environ Health 2007; 6 (4): 1–11.

    Google Scholar 

  4. Rivera-Nunez Z, Meliker JR, Meeker JD, Slotnick MJ, Nriagu JO . Urinary arsenic species, toenail arsenic, and arsenic intake estimates in a Michigan population with low levels of arsenic in drinking water. J Expos Sci Environ Epidemiol 2012; 22 (2): 182–190.

    Article  CAS  Google Scholar 

  5. Brown KG, Ross GL . Arsenic, drinking water, and health: a position paper of the American Council on Science and Health. Regul Toxicol Pharmacol 2002; 36 (2): 162–174.

    Article  CAS  PubMed  Google Scholar 

  6. Meacher DM, Menzel DB, Dillencourt MD, Bic LF, Schoof RA, Yost LJ et al. Estimation of multimedia inorganic arsenic intake in the U.S. population. HERA 2002; 8 (7): 1697–1721.

    CAS  Google Scholar 

  7. Hughes MF . Biomarkers of exposure: a case study with inorganic arsenic. Environ Health Perspect 2006; 114 (11): 1790–1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. MacIntosh DL, Spengler JD, Ozkaynak H, Tsai L, Ryan PB . Dietary exposures to selected metals and pesticides. Environ Health Perspect 1996; 104 (2): 202–209.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. NRC. Arsenic in drinking water: 2001 Update. Free Executive Summary, 2001. Retrieved from http://www.nap.edu/catalog/10194.html.

  10. Meharg A, Hartley-Whitaker J . Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 2002; 154 (1): 29–43.

    Article  CAS  Google Scholar 

  11. Meharg A, Raab A . Getting to the bottom of arsenic standards and guidelines. Environ Sci Technol 2010; 44 (12): 4395–4399.

    Article  CAS  PubMed  Google Scholar 

  12. Lasky T, Sun W, Kadry A, Hoffman MK . Mean total arsenic concentrations in chicken 1989–2000 and estimated exposures for consumers of chicken. Environ Health Perspect 2004; 112 (1): 18–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tao SS, Bolger PM . Dietary arsenic intakes in the United States: FDA Total Diet Study, September 1991-December 1996. Food Addit Contam 1999; 16 (11): 465–472.

    Article  CAS  PubMed  Google Scholar 

  14. Thomas KW, Sheldon LS, Pellizzari ED, Handy RW, Roberds JM, Berry MR . Testing duplicate diet sample collection methods for measuring personal dietary exposures to chemical contaminants. J Expos Anal Environ Epidemiol 1997; 7 (1): 17–36.

    CAS  Google Scholar 

  15. Moschandreas DJ, Karuchit S, Berry MR, O'Rourke MK, Lo D, Lebowitz MD et al. Exposure apportionment: ranking food items by their contribution to dietary exposure. J Expos Anal Environ Epidemiol 2002; 12 (4): 233–243.

    Article  CAS  Google Scholar 

  16. Xue J, Zartarian V, Wang SW, Liu SV, Georgopoulos P . Probabilistic modeling of dietary arsenic exposure and dose and evaluation with 2003–2004 NHANES data. Environ Health Perspect 2010; 118 (3): 345–350.

    Article  CAS  PubMed  Google Scholar 

  17. Rivera-Nunez Z, Meliker JR, Linder AM, Nriagu JO . Reliability of spot urine samples in assessing arsenic exposure. Int J Hyg Environ Health 2010; 213 (4): 259–264.

    Article  CAS  PubMed  Google Scholar 

  18. Pellizzari ED, Clayton CA . Assessing the measurement precision of various arsenic forms and arsenic exposure in the National Human Exposure Assessment Survey (NHEXAS). Environ Health Perspect 2006; 114 (2): 220–227.

    Article  CAS  PubMed  Google Scholar 

  19. Mandal BK, Ogra Y, Anzai K, Suzuki KT . Speciation of arsenic in biological samples. Toxicol Appl Pharmacol 2004; 198 (3): 307–318.

    Article  CAS  PubMed  Google Scholar 

  20. Calderon RL, Hudgens E, Le XC, Schreinemachers D, Thomas DJ . Excretion of arsenic in urine as a function of exposure to arsenic in drinking water. Environ Health Perspect 1999; 107 (8): 663–667.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soleo L, Lovreglio P, Iavicoli S, Antelmi A, Drago I, Basso A et al. Significance of urinary arsenic speciation in assessment of seafood ingestion as the main source of organic and inorganic arsenic in a population resident near a coastal area. Chemosphere 2008; 73 (3): 291–299.

    Article  CAS  PubMed  Google Scholar 

  22. Cleland B, Tsuchiya A, Kalman DA, Dills R, Burbacher TM, White JW et al. Arsenic exposure within the Korean community (United States) based on dietary behavior and arsenic levels in hair, urine, air, and water. Environ Health Perspect 2009; 117 (4): 632–638.

    Article  CAS  PubMed  Google Scholar 

  23. Cascio C, Raab A, Jenkins RO, Feldmann J, Meharg AA, Haris PI . The impact of a rice based diet on urinary arsenic. J Environ Monit 2011; 13 (2): 257–265.

    Article  CAS  PubMed  Google Scholar 

  24. Lovreglio P, D'Errico MN, Gilberti ME, Drago I, Basso A, Apostoli P et al. The influence of diet on intra and inter-individual variability of urinary excretion of arsenic species in Italian healthy individuals. Chemosphere 2012; 86 (9): 898–905.

    Article  CAS  PubMed  Google Scholar 

  25. Lebowitz MD, O'Rourke MK, Gordon S, Moschandreas DJ, Buckley T, Nishioka M . Population-based exposure measurements in Arizona: a phase I field study in support of the National Human Exposure Assessment Survey. J Expos Anal Environ Epidemiol 1995; 5 (3): 297–325.

    CAS  Google Scholar 

  26. O'Rourke MK, Van de Water PK, Jin S, Rogan SP, Weiss AD, Gordon SM et al. Evaluations of primary metals from NHEXAS Arizona: distributions and preliminary exposures. National Human Exposure Assessment Survey. J Expos Anal Environ Epidemiol 1999a; 9 (5): 435–445.

    Article  CAS  Google Scholar 

  27. Robertson GL, Lebowitz MD, O'Rourke MK, Gordon S, Moschandreas D . The National Human Exposure Assessment Survey (NHEXAS) study in Arizona--introduction and preliminary results. J Expos Anal Environ Epidemiol 1999; 9 (5): 427–434.

    Article  CAS  Google Scholar 

  28. FDA Total Diet Study Statistics on Element Results Vol. Revision 4.1, 1991-3 through 2005-4. US Food and Drug Administration H. a. H. S., 2007.

  29. Schoof RA, Yost LJ, Eickhoff J, Crecelius EA, Cragin DW, Meacher DM et al. A market basket survey of inorganic arsenic in food. Food Chem Toxicol 1999; 37 (8): 839–846.

    Article  CAS  PubMed  Google Scholar 

  30. O'Rourke MK, Rogan SP, Jin S, Robertson GL . Spatial distributions of arsenic exposure and mining communities from NHEXAS Arizona. National Human Exposure Assessment Survey. J Expos Anal Environ Epidemiol 1999b; 9 (5): 446–455.

    Article  CAS  Google Scholar 

  31. NDSR. Nutrition Data System for Research Software Version 2009. Nutrition Coordinating Center (NCC), University of Minnesota: Minneapolis, MN, 2009. Retrieved from http://www.ncc.umn.edu/products/database.html.

  32. Egan SK, Tao SS, Pennington JA, Bolger PM . US Food and Drug Administration's Total Diet Study: intake of nutritional and toxic elements, 1991-96. Food Addit Contam 2002; 19 (2): 103–125.

    Article  CAS  PubMed  Google Scholar 

  33. Kurzius-Spencer M . Modeling the Effects of Dietary Arsenic and Nutrient Intake on Urinary Arsenic Biomarkers. PhD, University of Arizona: Tucson, AZ, 2012.

    Google Scholar 

  34. Ryan PB, Scanlon KA, MacIntosh DL . Analysis of dietary intake of selected metals in the NHEXAS-Maryland investigation. Environ Health Perspect 2001; 109 (2): 121–128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kile ML, Houseman EA, Breton CV, Quamruzzaman Q, Rahman M, Mahiuddin G et al. Association between total ingested arsenic and toenail arsenic concentrations. J Environ Sci Health A Tox Hazard Subst Environ Eng 2007; 42 (12): 1827–1834.

    Article  CAS  PubMed  Google Scholar 

  36. Kile ML, Houseman EA, Breton CV, Smith T, Quamruzzaman Q, Rahman M et al. Dietary arsenic exposure in Bangladesh. Environ Health Perspect 2007; 115 (6): 889–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roberge J, O’Rourke MK, Meza-Montenegro MM, Gutierrez-Millan LE, Burgess JL, Harris RB . Binational Arsenic Exposure Survey: methodology and exploration of the relationship between estimated arsenic intake from drinking water and urinary arsenic concentrations. Int J Environ Res Public Health 2012; 9: 1051–1067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. ATSDR. Agency for Toxic Substances and Disease Registry Toxicological Profile for Arsenic (Update) 2007.

  39. Lorenzana R, Yeow A, Colman J, Chappell L, Choudhury H . Arsenic in seafood: speciation issues for human health risk assessment. Hum Ecol Risk Assessment 2009; 15 (1): 185–200.

    Article  CAS  Google Scholar 

  40. Hopenhayn-Rich C, Biggs ML, Kalman DA, Moore LE, Smith AH . Arsenic methylation patterns before and after changing from high to lower concentrations of arsenic in drinking water. Environ Health Perspect 1996; 104 (11): 1200–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meza MM, Kopplin MJ, Burgess JL, Gandolfi AJ . Arsenic drinking water exposure and urinary excretion among adults in the Yaqui Valley, Sonora, Mexico. Environ Res 2004; 96 (2): 119–126.

    Article  CAS  PubMed  Google Scholar 

  42. Josyula AB, McClellen H, Hysong TA, Kurzius-Spencer M, Poplin GS, Sturup S et al. Reduction in urinary arsenic with bottled-water intervention. J Health Popul Nutr 2006; 24 (3): 298–304.

    PubMed  PubMed Central  Google Scholar 

  43. Macdiarmid J, Blundell J . Assessing dietary intake: Who, what and why of under-reporting. Nutr Res Rev 1998; 11 (2): 231–253.

    Article  CAS  PubMed  Google Scholar 

  44. Johansson L, Solvoll K, Bjorneboe GE, Drevon CA . Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. Am J Clin Nutr 1998; 68 (2): 266–274.

    Article  CAS  PubMed  Google Scholar 

  45. McCrory MA, Hajduk CL, Roberts SB . Procedures for screening out inaccurate reports of dietary energy intake. Public Health Nutr 2002; 5 (6A): 873–882.

    Article  PubMed  Google Scholar 

  46. Huang TT, Roberts SB, Howarth NC, McCrory MA . Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 2005; 13 (7): 1205–1217.

    Article  PubMed  Google Scholar 

  47. Poslusna K, Ruprich J, de Vries JH, Jakubikova M, van't Veer P . Misreporting of energy and micronutrient intake estimated by food records and 24 h recalls, control and adjustment methods in practice. Br J Nutr 2009; 101 (Suppl 2): S73–S85.

    Article  CAS  PubMed  Google Scholar 

  48. Mifflin MD, Jeor ST, Hill LA, Scott BJ, Daugherty SA, Koh YO . A new predictive equation for resting energy expenditure in healthy individuals. Am J Clin Nutr 1990; 51 (2): 241–247.

    Article  CAS  PubMed  Google Scholar 

  49. James WPT, Schofield C . and Food and Agriculture Organization of the United Nations. Human Energy Requirements: A Manual for Planners and Nutritionists. Published by arrangement with the Food and Agriculture Organization of the United Nations by Oxford University Press: Oxford; New York, 1990.

    Google Scholar 

  50. Yost LJ, Schoof RA, Aucoin R . Intake of inorganic arsenic in the North American diet. HERA 1998; 4 (1): 137–152.

    CAS  Google Scholar 

  51. Roberge J, Abalos A, Skinner J, Kopplin M, Harris RB . Presence of arsenic in commercial beverages. Am J Environ Sci 2009; 5 (6): 688–694.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would also like to acknowledge the integral role of Seumas Rogan in coordination of data collection and database management, and numerous students for their work in field and lab. This study was completed in partial fulfillment of the requirements of the PhD program in Epidemiology at the University of Arizona, Mel & Enid Zuckerman College of Public Health. Funding for this research was provided by the U.S. EPA Star Grant # R83399201-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret Kurzius-Spencer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurzius-Spencer, M., O'Rourke, M., Hsu, CH. et al. Measured versus modeled dietary arsenic and relation to urinary arsenic excretion and total exposure. J Expo Sci Environ Epidemiol 23, 442–449 (2013). https://doi.org/10.1038/jes.2012.120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2012.120

Keywords

This article is cited by

Search

Quick links