Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Urine-sampling methods for environmental chemicals in infants and young children

Abstract

This review paper examines and evaluates urine-sampling methodologies in infants and young children, to determine which methods are suitable for use in large biomonitoring surveys or studies of environmental chemicals in children younger than 6 years. Methods for non-toilet-trained children include the use of urine bags, collection pads (e.g., cotton or gauze inserts), disposable diapers, cotton diapers, and the clean catch method. In toilet-trained children, collection methods include use of a commode insert pan as well as specimen collection cups. The advantages and disadvantages of these various methods need to be evaluated with respect to the target population, timing and frequency of collection, minimum sample volume required, method of urine extraction, potential for contamination of the sample, stability of the analyte of interest, and burden on participants and research team. Collection methods must not introduce contamination or affect the integrity of the sample, should be logistically practical, and should minimize discomfort experienced by the child. Although collection of urine samples from children who are not toilet-trained is more challenging than collection from older toilet-trained children, the vulnerability of younger children to the exposure to and health effects of environmental chemicals makes finding suitable methods a priority.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  • Acquavella J.F., Alexander B.H., Mandel J.S., Gustin C., Baker B., and Chapman P., et al. Glyphosate biomonitoring for farmers and their families: results from the Farm Family Exposure Study. Environ Health Perspect 2004: 112 (3): 321–326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad T., Vickers D., Campbell S., Coulthard M.G., and Pedler S. Urine collection from disposable nappies. Lancet 1991: 338: 674–676.

    Article  CAS  PubMed  Google Scholar 

  • Aksglaede L., Sørensen K., Petersen J.H., Skakkebæk N.E., and Juul A. Recent decline in age at breast development: the Copenhagen Puberty Study. Pediatrics 2009: 123: e932–e939.

    Article  PubMed  Google Scholar 

  • Alam M.T., Coulter J.B.S., Pacheco J., Correia J.B., Ribeiro M.G.B., and Coelho M.F.C., et al. Comparison of urine contamination rates using three different methods of collection: clean-catch, cotton wool pad and urine bag. Ann Trop Paediatr 2005: 25: 29–34.

    Article  CAS  PubMed  Google Scholar 

  • Alessio L., Berlin A., Dell'Orto A., Toffoletto F., and Ghezzi I. Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int Arch Occup Environ Health 1985: 55: 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Anestis S.F., Breakey A.A., Beuerlein M.M., and Bribiescas R.G. Specific gravity as an alternative to creatinine for estimating urine concentration in captive and wild chimpanzee (Pan troglodytes) samples. Am J Primat 2009: 71: 130–135.

    Article  CAS  Google Scholar 

  • Arcury T.A., Grzywacz J.G., Barr D.B., Tapia J., Chen H., and Quandt S.A. Pesticide urinary metabolite levels of children in Eastern North Carolina farmworker households. Environ Health Perspect 2007: 115 (7): 1254–1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B.A., Alexander B.H., Mandel J.S., Acquavella J.F., Honeycutt R., and Chapman P. Farm Family Exposure Study: methods and recruitment practices for a biomonitoring study of pesticide exposure. J Expo Anal Environ Epidemiol 2005: 15 (6): 491–499.

    Article  CAS  PubMed  Google Scholar 

  • Bakker B., Vulsma T., de Randamie J., Achterhuis A.M., Wiedijk B., and Oosting H., et al. A negative iodine balance is found in healthy neonates compared with neonates with thyroid agenesis. J Endocrinol 1999: 161: 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Barr D.B., Wang R.Y., and Needham L.L. Biologic monitoring of exposure to environmental chemicals throughout the life stages: requirements and issues for consideration for the National Children's Study. Environ Health Perspect 2005a: 113: 1083–1091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barr D.B., Wilder L.C., Caudill S.P., Gonzalez A.J., Needham L.L., and Pirkle J.L. Urinary creatinine concentrations in the U.S. populations: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005b: 113: 192–200.

    Article  CAS  PubMed  Google Scholar 

  • Barry R.C., Lin Y., Wang J., Liu G., and Timchalk C.A. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J Expo Sci Environ Epidemiol 2009: 19: 1–18.

    Article  CAS  PubMed  Google Scholar 

  • Becker K., Müssig-Zufika M., Conrad A., Lüdecke A., Schulz C., and Seiwert M., et al. German Environmental Survey for Children 2003/06—GerES IV. Human biomonitoring: levels of selected substances in blood and urine of children in Germany, 2008. Ed: UmweltBundesAmt. German Federal Environment Agency, Robert Koch Institute. Research report 202 62 219. Available online at: www.umweltbundesamt.de/survey.

  • Becker K., Seiwert M., Angerer J., Kolossa-Gehring M., Hoppe H-W., and Ball M., et al. IV GerES Pilot study: assessment of the exposure of German children to organophosphorus and pyrethroid pesticides. Int J Hyg Environ Health 2006: 209: 221–233.

    Article  CAS  PubMed  Google Scholar 

  • Bolte R.G. Urinary frequency in childhood. In: Fleisher G.R., Ludwig S., Henretig F.M., Ruddy R.M., and Silverman B.K., (Eds.). Textbook of Pediatric Emergency Medicine, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA, 2005, pp 663–668.

    Google Scholar 

  • Bradman A., Whitaker D., Quirós L., Castorina R., Henn B.C., and Nishioka M., et al. Pesticides and their metabolites in the homes and urine of farmworker children living in the Salinas Valley, CA. J Expo Sci Environ Epidemiol 2007: 17 (4): 331–349.

    Article  CAS  PubMed  Google Scholar 

  • Bradman A., and Whyatt R.M. Characterizing exposures to nonpersistent pesticides during pregnancy and early childhood in the National Children's Study: a review of monitoring and measurement methodologies. Environ Health Perspect 2005: 113 (8): 1092–1099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock J.W., Caudill S.P., Silva M.J., Needham L.L., and Hilborn E.D. Phthalate monoesters levels in the urine of young children. Bull Environ Contam Toxicol 2002: 68: 309–314.

    Article  CAS  PubMed  Google Scholar 

  • Burke N. Alternative methods for newborn urine sample collection. Pediatr Nurs 1995: 21: 546–549.

    CAS  PubMed  Google Scholar 

  • Calafat A.M., Needham L.L., Silva M.J., and Lambert G. Exposure to di-(2-ethylhexyl) phthalate among premature neonates in a neonatal intensive care unit. Pediatrics 2004: 113 (5): e429–e434.

    Article  PubMed  Google Scholar 

  • Chadha V., Garg U., and Alon U.S. Measurement of urinary concentration: a critical appraisal of methodologies. Pediatr Nephrol 2001: 16: 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Cohen H.A., Woloch B., Linder N., Vardi A., and Barzilai A. Urine samples from disposable diapers: an accurate method for urine cultures. J Fam Pract 1997: 44 (3): 290–292.

    CAS  PubMed  Google Scholar 

  • Cook J.D., Strauss K.A., Caplan Y.H., LoDico C.P., and Bush D.M. Urine pH: the effects of time and temperature after collection. J Anal Toxicol 2007: 31: 486–496.

    Article  CAS  PubMed  Google Scholar 

  • Curl C.L., Fenske R.A., and Elgethun K. Organophosphorus pesticide exposure of urban and suburban preschool children with organic and conventional diets. Environ Health Perspect 2003: 111 (3): 377–382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curl C.L., Fenske R.A., Kissel J.C., Shirai J.H., Moate T.F., and Griffith W., et al. Evaluation of take-home organophosphorus pesticide exposure among agricultural workers and their children. Environ Health Perspect 2002: 110 (12): A787–A792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curwin B.D., Hein M.J., Sanderson W.T., Striley C., Heederik D., and Kromhout H., et al. Urinary pesticide concentrations among children, mothers and fathers living in farm and non-farm households in Iowa. Ann Occup Hyg 2007: 51 (1): 53–65.

    Article  CAS  PubMed  Google Scholar 

  • Dorey C.M., and Zimmermann M.B. Reference values for spot urinary iodine concentrations in iodine-sufficient newborns using a new pad collection method. Thyroid 2008: 18: 347–352.

    Article  CAS  PubMed  Google Scholar 

  • Eskenazi B., Bradman A., Gladstone E.A., Jaramillo S., Birch K., and Holland N. CHAMACOS, a longitudinal birth cohort study: lessons from the fields. J Child Health 2003: 1: 3–27.

    Article  Google Scholar 

  • Fenske R.A., Bradman A., Whyatt R.M., Wolff M.S., and Barr D.B. Lessons learned for the assessment of children's pesticide exposure: critical sampling and analytical issues for future studies. Environ Health Perspect 2005: 113: 1455–1462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenske R.A., Lu C., Barr D., and Needham L. Children's exposure to chlorpyrifos and parathion in an agricultural community in Central Washington State. Environ Health Perspect 2002: 110 (5): 549–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenske R.A., Lu C., Simcox N.J., Loewenherz C., Touchstone J., and Moate T.F., et al. Strategies for assessing children's organophosphorus pesticide exposures in agricultural communities. J Expo Anal Environ Epidemiol 2000: 10: 662–671.

    Article  CAS  PubMed  Google Scholar 

  • Gammage D., and Yarandi H. The effects of diaper brands, urine volume, and time on specific gravity measurement. J Pediatr Nurs 1993: 8: 10–14.

    CAS  PubMed  Google Scholar 

  • Hahn L. Composition of menstrual blood. In: Dicfalusy E., Fraser I.S., Webb F.T., (Eds.). Endometrial bleeding and steroidal contraception: proceedings of a Symposium on Steroid Contraception and Mechanisms of Endometrial Bleeding, Geneva, 12–14 September 1979. Pitman Press, Bath, England, 1980, pp 107–131.

    Google Scholar 

  • Heckmann M., Hartmann M.F., Kampschulte B., Gack H., Bödeker R.-H., and Gortner L., et al. Assessing cortisol production in preterm infants: do not dispose of the nappies. Pediatr Res 2005: 57: 412–418.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y.A., Barr D.B., Akland G., Melnyk L., Needham L., and Pellizzari E.D., et al. Collecting urine samples from young children using cotton gauze for pesticide studies. J Expo Anal Environ Epidemiol 2000: 10: 703–709.

    Article  CAS  PubMed  Google Scholar 

  • Hu Y., Beach J., Raymer J., and Gardner M. Disposable diaper to collect urine samples from young children for pyrethroid pesticide studies. J Expo Anal Environ Epidemiol 2004: 14: 378–384.

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick J.M., Alexander J., and Cain R.M. Recovering urine from diapers: are test results accurate? MCN 1997: 22: 96–102.

    CAS  Google Scholar 

  • Kissel J.C., Curl C.L., Kedan G., Lu C., Griffith W., and Barr D.B., et al. Comparison of organophosphorus pesticide metabolite levels in single and multiple daily urine samples collected from preschool children in Washington State. J Expo Anal Environ Epidemiol 2005: 15: 164–171.

    Article  CAS  PubMed  Google Scholar 

  • Koch H.M., Becker K., Wittassek M., Seiwert M., Angerer J., and Kolossa-Gehring M. Di-n-butylphthalate and butylbenzylphthalate—urinary metabolite levels and estimated daily intakes: pilot study for the German Environmental Survey on children. J Expo Sci Environ Epidemiol 2007: 17: 378–387.

    Article  CAS  PubMed  Google Scholar 

  • Koch D., Lu C., Fisker-Andersen J., Jolley L., and Fenske R.A. Temporal association of children's pesticide exposure and agricultural spraying: report of a longitudinal biological monitoring study. Environ Health Perspect 2002: 110: 829–833.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leech S., and Penney M.D. Correlation of specific gravity and osmolality of urine in neonates and adults. Arch Dis Child 1987: 62: 671–673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis J. Clean-catch versus urine collection pads: a prospective trial. Paediatr Nurs 1998: 10: 15–16.

    Article  CAS  PubMed  Google Scholar 

  • Liaw L.C.T., Nayar D.M., Pedler S.J., and Coulthard M.G. Home collection of urine for culture from infants by three methods: survey of parents' preferences and bacterial contamination rates. BMJ 2000: 320: 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liddy S., (Cincinnati Children's Hospital Medical Center). Re: Urine collection- diaper inserts. 9 May 2008. Personal communication (e-mail) to Mandy Weselak (Health Canada). 2008.

  • Loewenherz C., Fenske R.A., Simcox N.J., Bellamy G., and Kalman D. Biological monitoring of organophosphorus pesticide exposure among children of agricultural workers in central Washington State. Environ Health Perspect 1997: 105: 1344–1353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardero N., Casanova O., Behnke M., Eyler F.D., and Bertholf R.L. Measurement of cocaine and metabolites in urine, meconium, and diapers by gas chromatography/mass spectrometry. Ann Clin Lab Sci 1993: 23: 385–394.

    CAS  PubMed  Google Scholar 

  • Lu C., Knutson D.E., Fisker-Andersen J., and Fenske R.A. Biological monitoring survey of organophosphorus pesticide exposure among preschool children in the Seattle metropolitan area. Environ Health Perspect 2001: 109: 299–303.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marbury M.C., Hammond S.K., and Haley N.J. Measuring exposure to environmental tobacco smoke in studies of acute health effects. Am J Epidemiol 1993: 137: 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  • Matos V., Drukker A., and Guignard J.P. Spot urine samples for evaluating solute excretion in the first week of life. Arch Dis Child Fetal Neonatal Ed 1999: 80: F240–F242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matt G.E., Wahlgren D.R., Hovell M.F., Zakarian J.M., Bernert J.T., and Meltzer S.B., et al. Measuring environmental tobacco smoke exposure in infants and young children through urine cotinine and memory-based parental reports: empirical findings and discussion. Tob Control 1999: 8: 282–289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morris C.B., Vince J.D., Ripa P., and Tefuarani N. The clean catch technique for urine collection in infants and young children [letter]. Trop Doctor 2007: 37: 125.

    Article  CAS  Google Scholar 

  • Needham L.L., Özkaynak H., Whyatt R.M., Barr D.B., Wang R.Y., and Naeher L., et al. Exposure assessment in the National Children's Study: introduction. Environ Health Perspect 2005: 113: 1076–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needham L.L., and Sexton K. Assessing children's exposure to hazardous environmental chemicals: an overview of selected research challenges and complexities. J Expo Anal Environ Epidemiol 2000: 10: 611–629.

    Article  CAS  PubMed  Google Scholar 

  • NICE (National Institute for Clinical Excellence). Urinary tract infections in children: diagnosis, treatment and long-term management. Accessed online at: http://guidance.nice.org.uk/CG54(25 March 2009).

  • O'Rourke M.K., Lizardi P.S., Rogan S.P., Freeman N.C., Aguirre A., and Saint C.G. Pesticide exposure and creatinine variation among young children. J Expo Anal Environ Epidemiol 2000: 10 (6): 672–681.

    Article  CAS  PubMed  Google Scholar 

  • Pearson M.A., Lu C., Schmotzer B.J., Waller L.A., and Riederer A.M. Evaluation of physiological measures for correcting variation in urinary output: implications for assessing environmental chemical exposure in children. J Expo Sci Environ Epidemiol 2009: 19: 336–342.

    Article  CAS  PubMed  Google Scholar 

  • Pillitteri A. Nursing care of a child undergoing diagnostic techniques and other therapeutic modalities, In: Maternal & Child Health Nursing: Care of the Childbearing & Childrearing Family, 5th edn. Lippincott Williams & Wilkins, Philadelphia, PA, 2006, pp 1106–1138.

    Google Scholar 

  • Pradella M., Dorizzi R.M., and Rigolin F. Relative density of urine: methods and clinical significance. CRC Crit Rev Clin Lab Sci 1988: 26: 195–242.

    Article  CAS  Google Scholar 

  • Rao S., Bhatt J., Houghton C., and Macfarlane P. An improved urine collection pad method: a randomised clinical trial. Arch Dis Child 2004: 89: 773–775.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao S., Houghton C., and Macfarlane P.I. A new urine collection method; pad and moisture sensitive alarm [letter]. Arch Dis Child 2003: 88: 836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riboli E., Haley N.J., De Waard F., and Saracci R. Validity of urinary biomarkers of exposure to tobacco smoke following prolonged storage. Int J Epidemiol 1995: 24: 354–358.

    Article  CAS  PubMed  Google Scholar 

  • Roberts S.B., and Lucas A. Measurement of urinary constituents and output using disposable napkins. Arch Dis Child 1985: 60: 1021–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers J., and Saunders C. Urine collection in infants and children. Nurs Times 2008: 104: 41–42.

    Google Scholar 

  • Royster M.O., Hilborn E.D., Barr D., Carty C.L., Rhoney S., and Walsh D. A pilot study of global positioning system/geographical information system measurement of residential proximity to agricultural fields and urinary organophosphate metabolite concentrations in toddlers. J Expo Anal Environ Epidemiol 2002: 12: 433–440.

    Article  CAS  PubMed  Google Scholar 

  • Sathyanarayana S., Karr C.J., Lozano P., Brown E., Calafat A.M., and Liu F., et al. Baby care products: possible sources of infant phthalate exposure. Pediatrics 2008: 121: e260–e268.

    Article  PubMed  Google Scholar 

  • Scher D.P., Alexander B.H., Adgate J.L., Eberly L.E., Mandel J.S., and Acquavella J.F., et al. Agreement of pesticide biomarkers between morning void and 24-h urine samples from farmers and their children. J Expo Sci Environ Epidemiol 2007: 17: 350–357.

    Article  CAS  PubMed  Google Scholar 

  • Schlager T.A., Hendley J.O., Dudley S.M., Hayden G.F., and Lohr J.A. Explanation for false-positive urine cultures obtained by bag technique. Arch Pediatr Adolesc Med 1995: 149: 170–173.

    Article  CAS  PubMed  Google Scholar 

  • Schoendorf K., (NIH). Re: Urine collection from toddlers. 6 May 2008. Personal communication (e-mail) to Tye Arbuckle (Health Canada) 2008.

  • Shalat S.L., Donnelly K.C., Freeman N.C.G., Calvin J.A., Ramesh S., and Jimenez M., et al. Nondietary ingestion of pesticides by children in an agricultural community on the US/Mexico border: preliminary results. J Expo Anal Environ Epidemiol 2003: 13 (1): 42–50.

    Article  CAS  PubMed  Google Scholar 

  • Soden S.E., Lowry J.A., Garrison C.B., and Wasserman G.S. 24-H provoked urine excretion test for heavy metals in children with autism and typically developing controls, a pilot study. Clin Toxicol 2007: 45: 476–481.

    Article  CAS  Google Scholar 

  • Sorahan T., Pang D., Esmen N., and Sadhra S. Urinary concentrations of toxic substances: an assessment of alternative approaches to adjusting for specific gravity. J Occup Environ Hyg 2008: 5: 721–723.

    Article  CAS  PubMed  Google Scholar 

  • Suwazono Y., Akesson A., Alfvén T., Järup L., and Vahter M. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers 2005: 10: 117–126.

    Article  CAS  PubMed  Google Scholar 

  • Valcke M., Samuel O., Bouchard M., Dumas P., Belleville D., and Tremblay C. Biological monitoring of exposure to organophosphate pesticides in children living in peri-urban areas of the Province of Québec, Canada. Int Arch Occup Environ Health 2006: 79: 568–577.

    Article  CAS  PubMed  Google Scholar 

  • Vij H.S., and Howell S. Improving the specific gravity adjustment method for assessing urinary concentrations of toxic substances. Am Ind Hyg Assoc J 1998: 59: 375–380.

    Article  CAS  PubMed  Google Scholar 

  • Voinescu G.C., Shoemaker M., Moore H., Khanna R., and Nolph K.D. The relationship between urine osmolality and specific gravity. Am J Med Sci 2002: 323: 39–42.

    Article  PubMed  Google Scholar 

  • Weuve J., Sánchez B.N., Calafat A.M., Schettler T., Green R.A., and Hu H., et al. Exposure to phthalates in neonatal intensive care unit infants: urinary concentrations of monoesters and oxidative metabolites. Environ Health Perspect 2006: 114: 1424–1431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zohouri F.V., Swinbank C.M., Maguire A., and Moynihan P.J. Is the fluoride/creatinine ratio of a spot urine sample indicative of 24-h urinary fluoride? Community Dent Oral Epidemiol 2006: 34: 130–138.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tye E Arbuckle.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, E., Arbuckle, T. Urine-sampling methods for environmental chemicals in infants and young children. J Expo Sci Environ Epidemiol 19, 625–633 (2009). https://doi.org/10.1038/jes.2009.36

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2009.36

Keywords

  • urine
  • children
  • biomonitoring
  • environmental chemicals
  • infants
  • diapers

This article is cited by

Search

Quick links