Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures

Abstract

The coupling of dosimetry measurements and modeling represents a promising strategy for deciphering the relationship between chemical exposure and disease outcome. To support the development and implementation of biological monitoring programs, quantitative technologies for measuring xenobiotic exposure are needed. The development of portable nanotechnology-based electrochemical (EC) sensors has the potential to meet the needs for low cost, rapid, high-throughput, and ultrasensitive detectors for biomonitoring an array of chemical markers. Highly selective EC sensors capable of pM sensitivity, high-throughput and low sample requirements (<50 μl) are discussed. These portable analytical systems have many advantages over currently available technologies, thus potentially representing the next generation of biomonitoring analyzers. This paper highlights research focused on the development of field-deployable analytical instruments based on EC detection. Background information and a general overview of EC detection methods and integrated use of nanomaterials in the development of these sensors are provided. New developments in EC sensors using various types of screen-printed electrodes, integrated nanomaterials, and immunoassays are presented. Recent applications of EC sensors for assessing exposure to pesticides or detecting biomarkers of disease are highlighted to demonstrate the ability to monitor chemical metabolites, enzyme activity, or protein biomarkers of disease. In addition, future considerations and opportunities for advancing the use of EC platforms for dosimetric studies are discussed.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

References

  • Al-Saleh I.A. Pesticides: a review article. J Environ Path Toxicol Oncol 1994: 13: 151–161.

    CAS  Google Scholar 

  • Andreescu S., and Marty J.-L. Twenty years research in cholinesterase biosensors: from basic research to practical applications. Biomol Eng 2006: 23: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Angerer J., Bird M.G., Burke T.A., Doerrer N.G., Needham L., Robison SH, et al. Strategic biomonitoring initiatives: moving the science forward. Toxicol Sci 2006: 93 (1): 3–10.

    Article  CAS  PubMed  Google Scholar 

  • Arnold E.K., and Beasley V.R. The pharmacokinetics of chlorinated phenoxy acid herbicidnes: a literature review. Vet Hum Toxicol 1989: 31 (2): 121–125.

    CAS  PubMed  Google Scholar 

  • Ashley K. Developments in electrochemical sensors for occupational and environmental health applications. J Hazard Mater 2003: 102: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Aspelin A.L. Pesticide Industry Sales and Usage: 1990 and 1991 Market Estimates. Office of Pesticide Programs, US Environmental Protection Agency, EPA, Washington, DC, 1992, 733-K-92-001.

    Google Scholar 

  • Aspelin A.L. Pesticide Industry Sales and Usage: 1992 and 1993 Market Estimates. Office of Pesticide Programs, US Environmental Protection Agency, EPA, Washington, DC, 1994, 733-K-94-001.

    Google Scholar 

  • Authier L., Grossiord C., Brossier P., and Limoges B. Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 2001: 73: 4450–4456.

    Article  CAS  PubMed  Google Scholar 

  • Badihi-Mossberg M., Buchner V., and Rishpon J. Electrochemical biosensors for pollutants in the environment. Electroanalysis 2007: 19: 2015–2028.

    Article  CAS  Google Scholar 

  • Bard A.J., and Faulkner L.R. Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons Inc., New York, 1980, pp 413–414.

    Google Scholar 

  • Barr D.B., Bravo R., Weerasekera G., Caltabiano L.M., Whitehead Jr R.D., et al. Concentrations of dialkyl phosphate metabolites of organophosphorus pesticides in the U.S. population. Environ Health Perspect 2004: 112: 186–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belmont C., Tercier M.L., Buffle J., Fiaccabrino G.C., and Koudelka-Hep M. Mercury-plated iridium-based microelectrode array for trace metals detection by voltammetry: optimum conditions and reliability. Anal Chim Acta 1996: 329: 203–214.

    Article  CAS  Google Scholar 

  • Berkowitz G.S., Wetmur J.G., Birman-Deych E., Obel J., Lapinski R.H., et al. In utero pesticide exposure, maternal paraoxonase activity, and head circumference. Environ Health Perspect 2004: 112 (3): 388–391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Black R.M., Harrison J.M., and Read R.W. The interaction of sarin and soman with plasma proteins: the identification of a novel phosphonylation site. Arch Toxicol 1999: 73: 123–126.

    Article  CAS  PubMed  Google Scholar 

  • Borzelleca J.F., and Skalsky H.L. The excretion of pesticides in saliva and its value in assessing exposure. J Environ Sci Health 1980: B15 (6): 843–866.

    Article  CAS  Google Scholar 

  • Boter H.L., and Ooms A.J.J. Stereospecificity of hydrolytic enzymes in their reaction with optically active organophosphorus compounds. II. The inhibition of aliesterase, acetylesterase, chymotrypsin and trypsin by S-alkyl para-nitrophenyl methylphosphonothiolates. Biochem Pharmacol 1967: 16: 1563–1569.

    Article  CAS  PubMed  Google Scholar 

  • Bradman A., Eskenazi B., Barr D., Bravo R., Castorina R., et al. Organophosphate urinary metabolite levels during pregnancy and after delivery in women living in an agricultural community. Environ Health Perspect 2005: 12 (113): 1802–1807.

    Article  CAS  Google Scholar 

  • Castellana E.T., Kataoka S., Albertorio F., and Cremer P.S. Direct writing of metal nanoparticle films inside sealed microfluidic channels. Anal Chem 2006: 78: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • CDC. Centers for Disease Control and Prevention. Third National Report on Human Exposure to Environmental Chemicals. Department of Health and Human Services, NCEH Pub. No. 05-0570 2005.

  • Chambers J.E., and Chambers H.W. Oxidative desulfation of chlorpyrifos, chlorpyrifos-methyl, and leptophos by rat brain and liver. J Biochem Toxicol 1989: 4 (1): 201–203.

    Article  CAS  PubMed  Google Scholar 

  • Chen G., Lin Y.H., and Wang J. Monitoring environmental pollutants by microchip capillary electrophoresis with electrochemical detection. Talanta 2006a: 68: 497–503.

    Article  CAS  PubMed  Google Scholar 

  • Chen S.H., Yuan R., Chai Y.Q., Zhang L.Y., Wang N., and Li X.L. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multiwall carbon nanotubes and gold colloidal nanoparticles. Biosens Bioelectron 2007: 22: 1268–1274.

    Article  CAS  PubMed  Google Scholar 

  • Chester G. Evaluation of agricultural worker exposure to and absorption of pesticides. Occup Hyg 1993: 37: 509–523.

    CAS  Google Scholar 

  • Christensen J.M. Human exposure to toxic metals: factors influencing interpretation of biomonitoring results. Sci Total Environ 1995: 166: 89–135.

    Article  CAS  PubMed  Google Scholar 

  • Collins G.E., and Lu Q. Microfabricated capillary electrophoresis sensor for uranium (VI). Anal Chim Acta 2001: 436: 181–189.

    Article  CAS  Google Scholar 

  • Cui R., Pan H.C., Zhu J.J., and Chen H.Y. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal Chem 2007: 79: 8494–8501.

    Article  CAS  PubMed  Google Scholar 

  • Dabek-Zlotorzynska E., Chen H., and Ding L.Y. Recent advances in capillary electrophoresis and capillary electrochromatography of pollutants. Electrophoresis 2003: 24: 4128–4149.

    Article  CAS  PubMed  Google Scholar 

  • Drummond T.G., Hill M.G., and Barton J.K. Electrochemical DNA sensors. Nat Biotechnol 2003: 21 (10): 1192–1199.

    Article  CAS  PubMed  Google Scholar 

  • Dong H., Li C.M., Zhang Y.F., Cao X.D., and Gan Y. Screen-printed microfluidic device for electrochemical immunoassay. Lab Chip 2007: 7 (12): 1752–1758.

    Article  CAS  PubMed  Google Scholar 

  • Du D., Ding J.W., Cai J., and Zhang A.D. One-step electrochemically deposited interface of chitosan-gold nanoparticles for acetylcholinesterase biosensor design. J Electroanal Chem 2007: 605: 53–60.

    Article  CAS  Google Scholar 

  • Ecobichon D.J., and Comeau A.M. Pseudocholinesterases of mammalian plasma: physicochemical properties and organophosphate inhibition in eleven species. Toxicol Appl Pharmacol 1973: 24 (1): 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Ecobichon D.J. Toxic effects of pesticides. In: Klassen C.D. (Ed.). Casarett & Doull's Toxicology The Basic Science of Poisons, 6th edn. McGraw-Hill, New York, 2001, pp. 763–810.

    Google Scholar 

  • Elhanany E., Ordentlich A., Dgany O., Kaplan D., Segall Y., et al. Resolving pathways of interaction of covalent inhibitors with the active site of acetylcholinesterases: MALDI-TOS/MS analysis of various nerve agent phosphyl adducts. Chem Res Toxicol 2001: 14: 912–918.

    Article  CAS  PubMed  Google Scholar 

  • EPA. U.S. Environmental Protection Agency, Integrated Risk Information System Database, Washington DC, 1994, 5–54.

  • Eskenazi B., Harley K., Bradman A., Weltzien E., Jewell N.P., et al. Association of in utero organophosphate pesticide exposure and fetal growth and length of gestation in an agricultural population. Environ Health Perspect 2004: 112 (10): 1116–1124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flounders A.W., Singh A.K., Volponi J.V., Carichner S.C., Wally K., Simonian A.S., et al. Development of sensors for direct detection of organophosphates. Part II: sol–gel modified field effect transistor with immobilized organophosphate hydrolase. Biosens Bioelectron 1999: 14: 715–722.

    Article  CAS  Google Scholar 

  • Fonnum F., Sterri S.H., Aas P., and Johnsen H. Carboxylesterase, importance for detoxification of organophosphorus anticholinesterases and trichothecenes. Fundam Appl Toxicol 1985: 5: S29–S38.

    Article  CAS  PubMed  Google Scholar 

  • Friberg L., and Elinder C.G. Biological monitoring of toxic metals. Scand J Work Environ Health 1993: 19 (Suppl 1): 7–13.

    CAS  PubMed  Google Scholar 

  • Galve R., Nichkova M., Camps F., Sanchez-Baeza F., and Marco M.P. Development and evaluation of an immunoassay for biological monitoring chlorophenols in urine as potential indicators of occupational exposure. Anal Chem 2002: 74 (2): 468–478.

    Article  CAS  PubMed  Google Scholar 

  • Gil F., and Pla A. Biomarkers as biological indicators of xenobiotic exposure. J Appl Toxicol 2001: 21: 245–255.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert D.M., and Sale T.C. Sequential electrolytic oxidation and reduction of aqueous phase energetic compounds. Environ Sci Technol 2005: 39: 9270–9277.

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri A., and Palmisano F. An Acetylcholinesterase/choline oxidase-based amperometric biosensor as a liquid chromatography detector for acetylcholine and choline determination in brain tissue. Anal Chem 2001: 73: 2875–2882.

    Article  CAS  PubMed  Google Scholar 

  • Guo S.J., and Wang E.K. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 2007: 598: 181–192.

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld J.F., and Powell R.D. New frontiers in gold labeling. J Histochem Cytochem 2000: 48: 471–480.

    Article  CAS  PubMed  Google Scholar 

  • Halámek J., Hepel M., and Skladal P. Investigation of highly sensitive piezoelectric immunosensors for 2,4-dichlorophenoxyacetic acid. Biosens Bioelectron 2001: 16 (4–5): 253–260.

    Article  PubMed  Google Scholar 

  • Hanrahan G., Patil D.G., and Wang J. Electrochemical sensors for environmental monitoring: design, development and applications. J Environ Monit 2004: 6: 657–664.

    Article  CAS  PubMed  Google Scholar 

  • Hardt J., and Angerer J. Determination of dialkyl phosphates in human urine using gas chromatography–mass spectrometry. J Anal Toxicol 2000: 8 (24): 678–684.

    Article  Google Scholar 

  • Hays S.M., Becker R.A., Leung H.W., Aylward L.L., and Pyatt D.W. Biomonitoring equivalents: a screening approach for interpreting biomonitoring results from a public health risk perspective. Reg Toxicol Pharmacol 2007: 47: 96–109.

    Article  CAS  Google Scholar 

  • He L., and Toh C.S. Recent advances in Anal Chem—a material approach. Anal Chim Acta 2006: 556: 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Henn B.C., McMaster S., and Padilla S. Measuring cholinesterase in human saliva. J Toxicol Environ Health A 2006: 69: 1805–1818.

    Article  CAS  Google Scholar 

  • Jain K.K. Applications of nanobiotechnology in clinical diagnostics. Clin Chem 2007: 53: 2002–2009.

    Article  CAS  PubMed  Google Scholar 

  • Johnson M.K., and Glynn P. Neuropathy target esterase (NTE) and organophosphorus-induced delayed polyneuropathy (OPIDP): recent advances. Toxicol Lett 1995: 82–83: 459–463.

    Article  PubMed  Google Scholar 

  • Johnson M.K. Organophosphorus esters causing delayed neurotoxic effects—mechanism of action and structure/activity studies. Arch Toxicol 1975: 34: 259–288.

    Article  CAS  PubMed  Google Scholar 

  • Kim S.N., Rusling J.F., and Papadimitrakopoulos F. Carbon nanotubes for electronic and electrochemical detection of biomolecules. Adv Mater 2007: 19: 3214–3228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knecht E., Martinez-Ramon A., and Grisolia S. Electron microscopic localization of glutamate dehydrogenase in rat liver mitochondria by an immunogold procedure and monoclonal and polyclonal antibodies. J Histochem Cytochem 1986: 34: 912–922.

    Article  Google Scholar 

  • Kousba A.A., Poet T.S., and Timchalk C Characterization of the in vitro kinetic interaction of chlorpyrifos-oxon with rat saliva cholinesterase: a potential biomonitoring matrix. Toxicology 2003: 188: 219–232.

    Article  CAS  PubMed  Google Scholar 

  • Kröger S., Setford S.J., and Turner A.P. Immunosensor for 2,4-dichlorophenoxyacetic acid in aqueous/organic solvent soil extracts. Anal Chem 1998: 70 (23): 5047–5053.

    Article  PubMed  Google Scholar 

  • Li B, Schopfer L.M., Hinrichs S.H., Masson P., and Lockridge O. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry assay for organophosphorus toxicants bound to human albumin at Tyr411. Anal Biochem 2007: 361: 263–272.

    Article  CAS  PubMed  Google Scholar 

  • Li B., Wang Y., and Dong S. Amplified electrochemical apatasensor taking AuNPs based sandwich sensing platform as a model. Biosens Bioelectron 2008: 23 (7): 965–970.

    Article  CAS  PubMed  Google Scholar 

  • Li N., and Ho C.-M. Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 2008: 130 (8): 2380–2381.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y.H., Lu F., and Wang J. Disposable carbon nanotube modified screen-printed biosensor for amperometric detection of organophosphorus pesticides and nerve agents. Electroanalysis 2004: 16: 145–149.

    Article  CAS  Google Scholar 

  • Lin Y.H., Yantasee W., and Wang J. Carbon nanotubes CNTs for the development of electrochemical biosensors. Front Biosci 2005: 10: 492–505.

    Article  CAS  PubMed  Google Scholar 

  • Lin Y.Y., Liu G.D., Wai C.M., and Lin Y.H. Magnetic beads-based bioelectrochemical immunoassay of polycyclic aromatic hydrocarbons. Electrochem Commun 2007: 9: 1547–1552.

    Article  CAS  Google Scholar 

  • Liu G.D., Riechers S.L., Timchalk C., and Lin Y. Sequential injection/electrochemical immunoassay for quantifying the pesticide metabolite 3,5,6-trichloro-2-pyridinol. Electrochem Commun 2005: 7: 1463–1470.

    Article  CAS  Google Scholar 

  • Liu G.D., and Lin Y.H. Electrochemical sensor for organophosphate pesticides and nerve agents using zirconia nanoparticles as selective sorbents. Anal Chem 2005: 77: 5894–5901.

    Article  CAS  PubMed  Google Scholar 

  • Liu G., Timchalk C., and Lin Y. Bioelectrochemical magnetic immunosensing of trichloropyridinol: a potential insecticide biomarker. Electroanalysis 2006: 18 (16): 1605–1613.

    Article  CAS  Google Scholar 

  • Liu G., and Lin Y. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Anal Chem 2006: 78: 835–843.

    Article  CAS  PubMed  Google Scholar 

  • Liu G., Wang J., Wu H., Lin Y.-Y., and Lin Y. Nanovehicles based bioassay labels. Electroanalysis 2007a: 19: 777–785.

    Article  CAS  Google Scholar 

  • Liu G., Lin Y.-Y., Wang J., Wu H., Chien M.W., and Lin Y. Disposable electrochemical immunosensor diagnosis device based nanoparticle probe and immunochromatographic strip. Anal Chem 2007b: 79: 7644–7653.

    Article  CAS  PubMed  Google Scholar 

  • Liu J., and Lu Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 2003: 125: 6642–6643.

    Article  CAS  PubMed  Google Scholar 

  • Lu C., Bravo R., Caltabiano L.M., Irish R.M., Weerasekera G., et al. The presence of dialkylphosphate in fresh fruit juices: implication for organophosphorus pesticide exposure and risk assessments. J Toxicol Environ Health A 2005: 68: 209–227.

    Article  CAS  PubMed  Google Scholar 

  • Ma T., and Chambers J.E. Kinetic parameters of desulfuration and dearylation of parathion and chlorpyrifos by rat liver microsomes. Food Chem Toxicol 1994: 32 (8): 763–767.

    Article  CAS  PubMed  Google Scholar 

  • Manz A., Fettinger J.C., Verpoorte E., Ludi H., Widmer H.M., and Harrison D.J. Micromachining of monocrystalline silicon and glass for chemical analysis systems. Trends Anal Chem 1991: 10: 144–149.

    Article  CAS  Google Scholar 

  • Mattigod S.V., Fryxell G.E., Alford K., Gilmore T., Parker K., et al. Functionalized TiO2 nanoparticles for use in situ anion immobilization. Environ Sci Technol 2005: 39 (18): 7306–7310.

    Article  CAS  PubMed  Google Scholar 

  • Merkoci A., Aldavert M., Tarrason G., Eritja R., and Alegret S. Toward and ICPMS-linked DNA assay based on gold nanoparticles immunoconnected through peptide sequences. Anal Chem 2005: 77: 6500–6503.

    Article  CAS  PubMed  Google Scholar 

  • Morgan M.K., Sheldon L.S., Croghan C.W., Jones P.A., Robertson G.L., et al. Exposures of preschool children to chlorpyrifos and its degradation product 3,5,6-trichloro-2-pyridinol in their everyday environment. J Exp Anal Environ Epidemiol 2005: 15: 297–309.

    Article  CAS  Google Scholar 

  • Nayak S., and Lyon L.A. Soft nanotechnology and soft nanoparticles. Angew Chem Int Ed 2005: 44: 7686–7708.

    Article  CAS  Google Scholar 

  • Neufeld T., Eshkenazi I., Cohen E., and Rishpon J. A micro flow injection electrochemical biosensor for organophosphorus pesticides. Biosens Bioelectron 2000: 15: 323–329.

    Article  CAS  PubMed  Google Scholar 

  • Nolan R.J., Rick D.L., Freshour N.L., and Saunders J.H. Chlorpyrifos: pharmacokinetics in human volunteers. Toxicol Appl Pharmacol 1984: 73: 8–15.

    Article  CAS  PubMed  Google Scholar 

  • Ooms A.J.J., and van Dijk C. The reaction of organophosphorus compounds with hydrolytic enzymes-III: the inhibition of chymotrypsin and trypsin. Biochem Pharmacol 1966: 15: 1361–1377.

    Article  CAS  Google Scholar 

  • Patolsky F., Zheng G.F., and Lieber C.M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat Protoc 2006: 1: 1711–1724.

    Article  CAS  PubMed  Google Scholar 

  • Peeples E.S., Schopfer L.M., Duysen E.G., Spaulding R., Voelker T., et al. Albumin a new biomarker for organophosphorus toxicant exposure, identified by mass spectrometry. Toxicol Sci 2005: 83: 303–312.

    Article  CAS  PubMed  Google Scholar 

  • Peoples S.A., and Knaak J. Monitoring pesticide blood cholinesterase and analyzing blood and urine for pesticides and their metabolites. In: Plimmer J.R. (Ed.). Pesticide Residues and Exposure, Am Chem Soc Symp Series No. 182. American Chemical Society, Washington, DC, 1982, pp. 41–57.

    Chapter  Google Scholar 

  • Piras L., and Reho S. Colloidal gold based electrochemical immunoassays for the diagnosis of actute myocardial infarction. Sens Actuators B 2005: 111–112: 450–454.

    Article  CAS  Google Scholar 

  • Polhuijs M., Langenberg J.P., and Benschop H.P. New method for retrospective detection of exposure to organophosphorus anticholinesterases: application to alleged sarin victims of Japanese terrorists. Toxicol Appl Pharmacol 1997: 146: 156–161.

    Article  CAS  PubMed  Google Scholar 

  • Pumera M., Sanchez S., Ichinose I., and Tang J. Electrochemical nanobiosensors. Sens Actuators B Chem 2007: 123: 1195–1205.

    Article  CAS  Google Scholar 

  • Rigas M.L., Okino M.S., and Quackenboss J.J. Use of a pharmacokinetic model to assess chlorpyrifos exposure and dose in children, based on urinary biomarker measurements. Toxicol Sci 2001: 61: 374–381.

    Article  CAS  PubMed  Google Scholar 

  • Renedo O.D., Alonso-Lomillo M.A., and Martinez M.J.A. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007: 73: 202–219.

    Article  CAS  PubMed  Google Scholar 

  • Ryhanen R.J. Pseudocholinesterase activity in some human body fluids. Gen Pharmacol 1983: 14 (4): 459–460.

    Article  CAS  PubMed  Google Scholar 

  • Sadik O.A., and Van Emon J.M. Applications of electrochemical immunosensors to environmental monitoring. Biosens Bioelectron 1996: 11 (8): 1–9.

    Article  Google Scholar 

  • Savolainen K. Understanding the toxic actions of organophosphates. In: Krieger R.I. (Ed.). Handbook of Pesticide Toxicology, Vol. 2 Academic Press, San Diego, 2001, pp. 1013–1041.

    Chapter  Google Scholar 

  • Singh A.K., Flounders A.W., Volponi J.V., Ashley C.S., Wally K., and Schoeninger J.S. Development of sensors for direct detection of organophosphates. Part I: immobilization, characterization and stabilization of acetylcholinesterase and organophosphate hydrolase on silica supports. Biosens Bioelectron 1999: 14: 703–713.

    Article  CAS  PubMed  Google Scholar 

  • Skoog D.A., and Leary J.J. Principles of Instrumental Analysis, 4th edn. Harcourt Brace College Publishers, New York, 1992, pp. 535–564.

    Google Scholar 

  • Sole S., and Alegret S. Environmental toxicity monitoring using electrochemical biosensing systems. Environ Sci Pollut Res Int 2001: 8: 256–264.

    Article  CAS  PubMed  Google Scholar 

  • Tan Y.M., Liao K.H., and Clewell III H.J. Reverse dosimetry: interpreting trihalomethanes biomonitoring data using physiologically based pharmacokinetic modeling. J Expo Sci Environ Epidemiol 2007: 17 (7): 591–603.

    Article  CAS  PubMed  Google Scholar 

  • Tang T.-C., Deng A., and Huang H.-J. Immunoassay with microtiter plate incorporated multichannel electrochemical detection system. Anal Chem 2002: 74: 2617–2621.

    Article  CAS  PubMed  Google Scholar 

  • Tansil N.C., and Gao Z.Q. Nanoparticles in biomolecular detection. Nano Today 2006: 1: 28–37.

    Article  Google Scholar 

  • Tasis D., Tagmatarchis N., Bianco A., and Prato M. Chemistry of carbon nanotubes. Chem Rev 2006: 106: 1105–1136.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C. Comparative inter-species pharmacokinetics of phenoxyacetic acid herbicides and related organic acids. Evidence that the dog is not a relevant species for evaluation of human health risk. Toxicology 2004: 200: 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C., Busby A., Campbell J.A., Needham L.L., and Barr D.B. Comparative pharmacokinetics of the organophosphorus insecticide chlorpyrifos and its major metabolites diethylphosphate, diethylthiophosphate and 3,5,6-trichloro-2-pyridinol in the rat. Toxicology 2007b: 237: 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C., Campbell J.A., Liu G., Lin Y., and Kousba A.A. Development of a non-invasive biomonitoring approach to determine exposure to the organophosphorus insecticide chlorpyrifos in rat saliva. Toxicol Appl Pharmacol 2007a: 219: 217–225.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C., Nolan R.J., Mendrala A.L., Dittenber D.A., Brzak K.A., and Mattsson J.L. A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model for the organophosphate insecticida chlorpyrifos in rats and humans. Toxicol Sci 2002: 66: 34–53.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C., Poet T., Kousba A., Campbell J., and Lin Y. Noninvasive biomonitoring approaches to determine dosimetry and risk following acute chemical exposure: analysis of lead or organophosphate insecticide in saliva. J Toxicol Environ Health A 2004: 67: 635–650.

    Article  CAS  PubMed  Google Scholar 

  • Timchalk C., Poet T.S., Lin Y., Weitz K.K., Zhao R., et al. Development of an integrated microanalytical system for analysis of lead in saliva and linkage to a physiologically based pharmacokinetic model describing lead saliva secretion. AIHAJ 2001: 62: 295–302.

    Article  CAS  PubMed  Google Scholar 

  • Trojanowicz M. Analytical applications of carbon nanotubes: a review. Trac-Trends Anal Chem 2006: 25: 480–489.

    Article  CAS  Google Scholar 

  • Velasco-Arjona A., Manclús J.J., Montoya A., and Luque de Castro M.D. Robotic sample pretreatment-immunoassay determination of chlorpyrifos metabolite (TCP) in soil and fruit. Talanta 1997: 45: 371–377.

    Article  CAS  PubMed  Google Scholar 

  • Wang J. Nanoparticle-based electrochemical bioassays of proteins. Electroanalysis 2007: 19: 769–776.

    Article  CAS  Google Scholar 

  • Wang J., Chatrathi M.P., Mulchandani A., and Chen W. Capillary electrophoresis microchips for separation and detection of organophosphate nerve agents. Anal Chem 2001: 73: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Li J.H., Baca A.J., Hu J.B., Zhou F.M., Yan W., and Pang D.W. Amplified voltammetric detection of DNA hybridization via oxidation of ferrocene caps on gold nanoparticle/streptavidin conjugates. Anal Chem 2003: 75: 3941–3945.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., and Li R. On-valve electrochemical detector for high-speed flow injection analysis. Anal Chem 1990: 62: 2414–2416.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu GD., Engelhard M.H., and Lin Y.H. Sensitive immunoassay of a biomarker tumor necrosis factor-alpha based on polyguanine-functionalized silica nanoparticle label. Anal Chem 2006a: 78: 6974–6979.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu G.D., and Lin Y.H. Amperometric choline biosensor fabricated through electrostatic assembly of bienzyme/polyelectrolyte hybrid layers on carbon nanotubes. Analyst 2006b: 131: 477–483.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu G.D., Timchalk C., and Lin Y. Carbon nanotube-based electrochemical sensor for assay of salivary cholinesterase enzyme activity: an exposure biomarker of organophosphate pesticides and nerve agents. Environ Sci Technol 2008a: 42: 2688–2693.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu G.D., Wu H., and Lin Y.H. Quantum dot-based electrochemical immunosensor for high throughput screening of prostate-specific antigen. Small 2008b: 4: 82–86.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Liu G.D., Wu H., and Lin Y.H. Sensitive electrochemical immunoassay for 2, 4, 6-trinitrotoluene based on functionalized silica nanoparticle labels. Anal Chim Acta 2008c: 610 (1): 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Wang J., Pumera M., Chatrathi M.P., Escarpa A., Musameh M., Collins G., Mulchandani A., Lin Y., and Olsen K. Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents. Anal Chem 2002: 74: 1187–1191.

    Article  CAS  PubMed  Google Scholar 

  • Weis B.K., Balshaw D., Barr J.R., Brown D., Ellisman M., Lioy P., et al. Personalized exposure assessment: promising approaches for human environmental health research. Environ Health Perspect 2005: 131: 840–848.

    Article  CAS  Google Scholar 

  • Wilson N.K., Chuang J.C., Lyu C., Menton R., and Morgan M.K. Aggregate exposures of nine preschool children to persistent organic pollutants at day care and at home. J Exp Anal Environ Epidemiol 2003: 13: 187–202.

    Article  CAS  Google Scholar 

  • Wu J., Fu Z.F., Yan F., and Ju H.X. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. Trac-Trends Anal Chem 2007a: 26: 679–688.

    Article  CAS  Google Scholar 

  • Wu H., Liu G., Wang J., and Lin Y. Quantum-dots based electrochemical immunoassay of interleukin-1α. Electrochem Commun 2007b: 9: 1573–1577.

    Article  CAS  Google Scholar 

  • Xiao Y., and Li C.M. Nanocomposites: from fabrications to electrochemical bioapplications. Electroanalysis 2008: 20 (6): 646–662.

    Article  CAS  Google Scholar 

  • Xu J.J., Wang A.J., and Chen H.Y. Electrochemical detection modes for microchip capillary electrophoresis. Trac-Trends Anal Chem 2007: 26: 125–132.

    Article  CAS  Google Scholar 

  • Yantasee W., Lin Y., Hongsirikarn K., Fryxell G.E., Addleman R., and Timchalk C. Electrochemcal sensors for the detection of lead and other toxic heavy metals: the next generation of personal exposure biomonitors. Environ Health Perspect 2007a: 115 (12): 1683–1690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yantasee W., Timchalk C., and Lin Y. Microanalyzer for biomonitoring lead (Pb) in blood and urine. Anal Bioanal Chem 2007b: 387 (1): 335–341.

    Article  CAS  PubMed  Google Scholar 

  • Zacco E., Galve R., Marco M.P., Alegret S., and Pividori M.I. Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms. Biosens Bioelectron 2007: 22: 1707–1715.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was performed at Pacific Northwest National Laboratory (PNNL) supported partially by grant number NS058161-01 from the National Institutes of Health CounterACT Program through the National Institute of Neurological Disorders and Stroke, partially by CDC/NIOSH Grant R01 OH008173, and partially by grant number U54 ES16015 from the National Institute of Environmental Health Sciences (NIEHS), NIH. The contents of this publication are solely the responsibility of the authors and do not necessarily represent the official views of the Federal Government. The research described in this paper was partly performed at the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the DOE's Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for DOE under Contract DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A Timchalk.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barry, R., Lin, Y., Wang, J. et al. Nanotechnology-based electrochemical sensors for biomonitoring chemical exposures. J Expo Sci Environ Epidemiol 19, 1–18 (2009). https://doi.org/10.1038/jes.2008.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2008.71

Keywords

  • biomonitoring
  • dosimetry
  • electrochemical sensors
  • exposure assessment

This article is cited by

Search

Quick links