Original Article | Published:

Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26

The Journal of Antibiotics volume 66, pages 617620 (2013) | Download Citation

Abstract

Since the early 1980s, fungi have emerged as a major cause of human disease. Fungal infections are associated with high levels of morbidity and mortality, and are now recognized as an important public health problem. Gram-negative bacterial strains of genus Xenorhabdus are known to form symbiotic associations with soil-dwelling nematodes of the Steinernematidae family. We describe here the discovery of a new antifungal metabolite, cabanillasin, produced by Xenorhabdus cabanillasii. We purified this molecule by cation-exchange chromatography and reverse-phase chromatography. We then determined the chemical structure of cabanillasin by homo- and heteronuclear NMR and MS-MS. Cabanillasin was found to be active against yeasts and filamentous fungi involved in opportunistic infections.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 1, 133–163 (2007).

  2. 2.

    & Antifungal resistance in pathogenic fungi. Clin. Infect. Dis. 35, 1073–1080 (2002).

  3. 3.

    Advances in systemic antifungal therapy. Clin. Dermatol. 30, 657–661 (2012).

  4. 4.

    The presence of Achromobacter nematophilus in the infective stage of a Neoaplectana sp. (Steinernematidae: Nematoda). Nematologica 12, 105–108 (1966).

  5. 5.

    Neoaplectana species: specificity of association with bacteria of the genus Xenorhabdus. Exp. Parasitol. 55, 258–263 (1983).

  6. 6.

    & Friend and foe: the two faces of Xenorhabdus nematophila. Nat. Rev. Microbiol. 5, 634–646 (2007).

  7. 7.

    , , & New insight into diversity in the genus Xenorhabdus, including the description of ten novel species. Int. J. Syst. Evol. Microbiol. 56, 2805–2818 (2006).

  8. 8.

    et al. Stages of infection during the tripartite interaction between Xenorhabdus nematophila, its nematode vector, and insect hosts. Appl. Environ. Microbiol. 70, 6473–6480 (2004).

  9. 9.

    & Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect. Physiol. 46, 1469–1476 (2000).

  10. 10.

    , & The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources. Naturwissenschaften 91, 371–373 (2004).

  11. 11.

    et al. The xaxAB genes encoding a new apoptotic toxin from the insect pathogen Xenorhabdus nematophila are present in plant and human pathogens. J. Biol. Chem. 282, 9571–9580 (2007).

  12. 12.

    et al. Txp40, a ubiquitous insecticidal toxin protein from Xenorhabdus and Photorhabdus bacteria. Appl. Environ. Microbiol. 72, 1653–1662 (2006).

  13. 13.

    , , & Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47–72 (1997).

  14. 14.

    , , & Bacterial metabolites In Entomopathogenic Nematology (ed. Gangler R99–114 CABI Publishing: New York, (2002).

  15. 15.

    , , , & Biologically active metabolites from Xenorhabdus spp. Part 2. Benzopyran-1-one derivatives with gastroprotective activity. J. Nat. Prod. 54, 785–795 (1991).

  16. 16.

    , , & Antimicrobial metabolites from a bacterial symbiont. J. Nat. Prod. 58, 1081–1086 (1995).

  17. 17.

    , & Nematophin, a novel antimicrobial substance produced by Xenorhabdus nematophilus (Enterobactereaceae). Can. J. Microbiol. 43, 770–773 (1997).

  18. 18.

    , & Identification of a new antimicrobial lysine-rich cyclolipopeptide family from Xenorhabdus nematophila. J. Antibiot. 62, 295–302 (2009).

  19. 19.

    , , , & Structure elucidation and biosynthesis of lysine-rich cyclic peptides in Xenorhabdus nematophila. Org. Biomol. Chem. 9, 3130–3132 (2011).

  20. 20.

    , , & Nemaucin, an antibiotic produced by entomopathogenic Xenorhabdus cabanillasii WO/2012/085177, 28 June (2012).

  21. 21.

    et al. In vitro interactions between amphotericin B and other antifungal agents and rifampin against Fusarium spp. Mycoses 54, 131–136 (2011).

  22. 22.

    Clinical and Laboratory Standards Institute. Development of in Vitro Susceptibility Testing Criteria And Quality Control Parameters: Approved Guideline 2nd edn CLSI document M23–A2 Clinical and Laboratory Standards Institute: Wayne, PA, (2002).

  23. 23.

    Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard 2nd edn CLSI Document M38–A2 Clinical and Laboratory Standards Institute: Wayne, PA, (2008).

  24. 24.

    Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard 2nd edn CLSI document M27–A2 Clinical and Laboratory Standards Institute: Wayne, PA, (2002).

Download references

Author information

Affiliations

  1. Nosopharm, Nîmes, France

    • Jessica Houard
    • , Philippe Villain-Guillot
    •  & Maxime Gualtieri
  2. CNRS UMR5048, INSERM, U554, Université Montpellier 1 et 2, Centre de Biochimie Structurale, Montpellier, France

    • André Aumelas
  3. Université Bordeaux, Microbiologie Fondamentale et Pathogénicité, UMR5234, Bordeaux, France

    • Thierry Noël
    •  & Valérie Fitton-Ouhabi
  4. INRA, UMR 1133 Laboratoire DGIMI, Montpellier, France

    • Sylvie Pages
    •  & Alain Givaudan
  5. Université Montpellier II, UMR 1133 Laboratoire DGIMI, Montpellier, France

    • Sylvie Pages
    •  & Alain Givaudan

Authors

  1. Search for Jessica Houard in:

  2. Search for André Aumelas in:

  3. Search for Thierry Noël in:

  4. Search for Sylvie Pages in:

  5. Search for Alain Givaudan in:

  6. Search for Valérie Fitton-Ouhabi in:

  7. Search for Philippe Villain-Guillot in:

  8. Search for Maxime Gualtieri in:

Corresponding author

Correspondence to Maxime Gualtieri.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/ja.2013.58