Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Prevalence and phenotypic characterization of MC4R variants in a large pediatric cohort

Abstract

Objective:

We aimed to determine the prevalence of melanocortin-4 receptor (MC4R) variants in a large German cohort of children with obesity in a pediatric outpatient clinic and to ascertain whether there is a specific phenotype associated with loss-of-function variants as previously reported.

Study Design:

Eight hundred and ninety-nine patients from our pediatric obesity clinic were screened for MC4R variants by DNA sequencing after PCR amplification. Retrospective statistical analysis of anthropometric and metabolic characteristics was performed, comparing patients with and without MC4R variants across the entire cohort (n=586) as well as in case–control analysis using patients with common sequence MC4R individually matched for age, sex and body mass index standard deviation score (SDS) (n=11 case–control pairs).

Results:

We identified heterozygous variants within the coding region of the MC4R gene in n=22 (2.45%) patients. Fourteen (1.56%) had a variant that impaired receptor function. One new frameshift (p.F152Sfs), an yet unpublished nonsense mutation (p.Q156X) and one nonsynonymous variation (p.V65E) described in the Mouse Genome Database were detected. Across the whole cohort, at all ages, mean height SDS in subjects with impaired receptor function was higher than in patients with common sequence MC4R. In matched individuals, this trend persisted (8 of the 11 pairs) within the case–control setting. No differences were found regarding metabolic characteristics.

Conclusions:

The observed prevalence of mutations causing impaired receptor function in this large cohort is comparable to other pediatric cohorts. MC4R deficiency tends to lead to a taller stature, confirming previous clinical reports. The association of MC4R mutations with a distinct phenotype concerning metabolic characteristics remains questionable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD . Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8: 1298–1308.

    CAS  Google Scholar 

  2. Kishi T, Aschkenasi CJ, Lee CE, Mountjoy KG, Saper CB, Elmquist JK . Expression of melanocortin 4 receptor mRNA in the central nervous system of the rat. J Comp Neurol 2003; 457: 213–235.

    Article  CAS  Google Scholar 

  3. Cone RD . Studies on the physiological functions of the melanocortin system. Endocr Rev 2006; 27: 736–749.

    Article  CAS  Google Scholar 

  4. Ellacott KL, Cone RD . The role of the central melanocortin system in the regulation of food intake and energy homeostasis: lessons from mouse models. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1265–1274.

    Article  CAS  Google Scholar 

  5. Mineur YS, Abizaid A, Rao Y, Salas R, DiLeone RJ, Gündisch D et al. Nicotine decreases food intake through activation of POMC neurons. Science 2011; 332: 1330–1332.

    Article  CAS  Google Scholar 

  6. van den Berg, van Beekum O, Heutink P, Felius BA, van de Heijning MP, Strijbis S et al. Melanocortin-4 receptor gene mutations in a Dutch cohort of obese children. Obesity 2011; 19: 604–611.

    Article  Google Scholar 

  7. Miraglia Del Giudice E, Cirillo G, Nigro V, Santoro N, D'Urso L, Raimondo P et al. Low frequency of melanocortin-4 receptor (MC4R) mutations in a Mediterranean population with early-onset obesity. Int J Obes Relat Metab Disord 2002; 26: 647–651.

    Article  CAS  Google Scholar 

  8. Lubrano-Berthelier C, Dubern B, Lacorte JM, Picard F, Shapiro A, Zhang S et al. Melanocortin 4 receptor mutations in a large cohort of severely obese adults: prevalence, functional classification, genotype-phenotype relationship, and lack of association with binge eating. J Clin Endocrinol Metab 2006; 91: 1811–1818.

    Article  CAS  Google Scholar 

  9. Vaisse C, Clement K, Guy-Grand B, Froguel P . A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat Genet 1998; 20: 113–114.

    Article  CAS  Google Scholar 

  10. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O'Rahilly S . Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 2003; 348: 1085–1095.

    Article  CAS  Google Scholar 

  11. Hinney A, Hohmann S, Geller F, Vogel C, Hess C, Wermter AK et al. Melanocortin-4 receptor gene: case-control study and transmission disequilibrium test confirm that functionally relevant mutations are compatible with a major gene effect for extreme obesity. J Clin Endocrinol Metab 2003; 88: 4258–4267.

    Article  CAS  Google Scholar 

  12. Lubrano-Berthelier C, Durand E, Dubern B, Shapiro A, Dazin P, Weill J et al. Intracellular retention is a common characteristic of childhood obesity-associated MC4R mutations. Hum Mol Genet 2003; 12: 145–153.

    Article  CAS  Google Scholar 

  13. Branson R, Potoczna N, Kral JG, Lentes KU, Hoehe MR, Horber FF . Binge eating as a major phenotype of melanocortin 4 receptor gene mutations. N Engl J Med 2003; 348: 1096–1103.

    Article  CAS  Google Scholar 

  14. Valli-Jaakola K, Lipsanen-Nyman M, Oksanen L, Hollenberg AN, Kontula K, Bjørbaek C et al. Identification and characterization of melanocortin-4 receptor gene mutations in morbidly obese finnish children and adults. J Clin Endocrinol Metab 2004; 89: 940–945.

    Article  CAS  Google Scholar 

  15. Hinney A, Bettecken T, Tarnow P, Brumm H, Reichwald K, Lichtner P et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J Clin Endocrinol Metab 2006; 91: 1761–1769.

    Article  CAS  Google Scholar 

  16. Tao YX . Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol Cell Endocrinol 2005; 239: 1–14.

    Article  CAS  Google Scholar 

  17. Stutzmann F, Tan K, Vatin V, Dina C, Jouret B, Tichet J et al. Prevalence of melanocortin-4 receptor deficiency in Europeans and their age-dependent penetrance in multigenerational pedigrees. Diabetes 2008; 57: 2511–2518.

    Article  CAS  Google Scholar 

  18. Huszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131–141.

    Article  CAS  Google Scholar 

  19. Dubern B, Clément K, Pelloux V, Froguel P, Girardet JP, Guy-Grand B et al. Mutational analysis of melanocortin-4 receptor, agouti-related protein, and alpha-melanocyte-stimulating hormone genes in severely obese children. J Pediatr 2001; 139: 204–209.

    Article  CAS  Google Scholar 

  20. Melchior C, Schulz A, Windholz J, Kiess W, Schöneberg T, Körner A . Clinical and functional relevance of melanocortin-4 receptor variants in obese German children. Horm Res Paediatr 2012; 78: 237–246.

    Article  CAS  Google Scholar 

  21. Wang CL, Liang L, Wang HJ, Fu JF, Hebebrand J, Hinney A . Several mutations in the melanocortin 4 receptor gene are associated with obesity in Chinese children and adolescents. J Endocrinol Invest 2006; 29: 894–898.

    Article  CAS  Google Scholar 

  22. Zakel UA, Wudy SA, Heinzel-Gutenbrunner M, Görg T, Schäfer H, Gortner L et al. Prevalence of melanocortin 4 receptor (MC4R) mutations and polymorphismsin consecutively ascertained obese children and adolescents from a pediatric health care utilization population. Klin Padiatr 2005; 217: 244–249.

    Article  CAS  Google Scholar 

  23. Kromeyer-Hauschild K, Kunze D, Wabitsch M . Perzentile für den body-mass-index für das Kindes- und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd 2001; 149: 807–818.

    Article  Google Scholar 

  24. Marshall WA, Tanner JM . Variations in pattern of pubertal changes in girls. Arch Dis Child 1969; 44: 291–303.

    Article  CAS  Google Scholar 

  25. Marshall WA, Tanner JM . Variations in the pattern of pubertal changes in boys. Arch Dis Child 1970; 45: 13–23.

    Article  CAS  Google Scholar 

  26. Prader A . Testicular size: assessment and clinical importance. Triangle 1966; 7: 240.

    CAS  Google Scholar 

  27. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The Fourth Report on the Diagnosis, Evaluation, and Treatment of High Blood Pressure in Children and Adolescents. Pediatrics 2004; 114: 555–576.

    Article  Google Scholar 

  28. Xiang Z, Litherland SA, Sorensen NB, Proneth B, Wood MS, Shaw AM et al. Pharmacological characterization of 40 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists and the agouti-related protein (AGRP) antagonist. Biochemistry 2006; 45: 7277–7288.

    Article  CAS  Google Scholar 

  29. Voigt M, Schneider KT, Jährig K . [Analysis of a 1992 birth sample in Germany. 1: New percentile values of the body weight of newborn infants]. Geburtshilfe Frauenheilkd 1996; 56: 550–558.

    Article  CAS  Google Scholar 

  30. Cole SA, Butte NF, Voruganti VS, Cai G, Haack K, Kent JW Jr et al. Evidence that multiple genetic variants of MC4R play a functional role in the regulation of energy expenditure and appetite in Hispanic children. Am J Clin Nutr. 2010; 91: 191–199.

    Article  CAS  Google Scholar 

  31. Santoro N, Cirillo G, Xiang Z, Tanas R, Greggio N, Morino G et al. Prevalence of pathogenetic MC4R mutations in Italian children with early onset obesity, tall stature and familial history of obesity. BMC Med Genet 2009; 10: 25.

    Article  Google Scholar 

  32. Martinelli CE, Keogh JM, Greenfield JR, Henning E, van der Klaauw AA, Blackwood A et al. Obesity due to melanocortin 4 receptor (MC4R) deficiency is associated with increased linear growth and final height, fasting hyperinsulinemia, and incompletely suppressed growth hormone secretion. J Clin Endocrinol Metab 2011; 96: E181–E188.

    Article  CAS  Google Scholar 

  33. Stutzmann F, Vatin V, Cauchi S, Morandi A, Jouret B, Landt O et al. Non-synonymous polymorphisms in melanocortin-4 receptor protect against obesity: the two facets of a Janus obesity gene. Hum Mol Genet 2007; 16: 1837–1844.

    Article  CAS  Google Scholar 

  34. Rettenbacher E, Tarnow P, Brumm H, Prayer D, Wermter AK, Hebebrand J et al. A novel non-synonymous mutation in the melanocortin-4 receptor gene (MC4R) in a 2-year-old Austrian girl with extreme obesity. Exp Clin Endocrinol Diabetes 2007; 115: 7–12.

    Article  CAS  Google Scholar 

  35. Tan KM, Ooi SQ, Ong SG, Kwan CS, Chan RM, Seng Poh LK et al. Functional characterization of variants in MC4R gene promoter region found in obese children. J Clin Endocrinol Metab 2014; 99: E931–E935.

    Article  CAS  Google Scholar 

  36. Reinehr T, Hebebrand J, Friedel S, Toschke AM, Brumm H, Biebermann H et al. Lifestyle intervention in obese children with variations in the melanocortin 4 receptor gene. Obesity 2009; 17: 382–389.

    Article  CAS  Google Scholar 

  37. Denzer C, Weibel A, Muche R, Karges B, Sorgo W, Wabitsch M . Pubertal development in obese children. Int J Obes 2007; 31: 1509–1519.

    Article  CAS  Google Scholar 

  38. Ballerini MG, Ropelato MG, Domené HM, Pennisi P, Heinrich JJ, Jasper HG . Differential impact of simple childhood obesity on the components of the growth hormone-insulin-like growth factor (IGF)-IGF binding proteins axis. J Pediatr Endocrinol Metab 2004; 17: 749–757.

    Article  CAS  Google Scholar 

  39. Vanderschueren-Lodeweyckx M . The effect of simple obesity on growth and growth hormone. Horm Res 1993; 40: 23–30.

    Article  CAS  Google Scholar 

  40. De Leonibus C, Marcovecchio ML, Chiavaroli V, de Giorgis T, Chiarelli F, Mohn A . Timing of puberty and physical growth in obese children: a longitudinal study in boys and girls. Pediatr Obes 2014; 9: 292–299.

    Article  CAS  Google Scholar 

  41. Marcovecchio ML, Chiarelli F . Obesity and growth during childhood and puberty. World Rev Nutr Diet 2013; 106: 135–141.

    PubMed  Google Scholar 

  42. Argente J, Caballo N, Barrios V, Pozo J, Muñoz MT, Chowen JA et al. Multiple endocrine abnormalities of the growth hormone and insulin-like growth factor axis in prepubertal children with exogenous obesity: effect of short- and long-term weight reduction. J Clin Endocrinol Metab 1997; 82: 2076–2083.

    CAS  PubMed  Google Scholar 

  43. Riedel M, Hoeft B, Blum WF, von zur Mühlen A, Brabant G . Pulsatile growth hormone secretion in normal-weight and obese men: differential metabolic regulation during energy restriction. Metabolism 1995; 44: 605–610.

    Article  CAS  Google Scholar 

  44. Martin NM, Houston PA, Patterson M, Sajedi A, Carmignac DF, Ghatei MA et al. Abnormalities of the somatotrophic axis in the obese agouti mouse. Int J Obes 2006; 30: 430–438.

    Article  CAS  Google Scholar 

  45. Lu D, Willard D, Patel IR, Kadwell S, Overton L, Kost T et al. Agouti protein is an antagonist of the melanocyte-stimulating-hormone receptor. Nature 1994; 371: 799–802.

    Article  CAS  Google Scholar 

  46. Soto N, Bazaes RA, Peña V, Salazar T, Avila A, Iñiguez G et al. Insulin sensitivity and secretion are related to catch-up growth in small-for-gestational-age infants at age 1 year: results from a prospective cohort. J Clin Endocrinol Metab 2003; 88: 3645–3650.

    Article  CAS  Google Scholar 

  47. Gat-Yablonski G, Phillip M . Leptin and regulation of linear growth. Curr Opin Clin Nutr Metab Care 2008; 11: 303–308.

    Article  CAS  Google Scholar 

  48. Phillip M, Moran O, Lazar L . Growth without growth hormone. J Pediatr Endocrinol Metab 2002; 15 (Suppl 5): 1267–1272.

    CAS  PubMed  Google Scholar 

  49. Tallam LS, Stec DE, Willis MA, da Silva AA, Hall JE . Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 2005; 46: 326–332.

    Article  CAS  Google Scholar 

  50. Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 2009; 360: 44–52.

    Article  CAS  Google Scholar 

  51. Kirk SL, Samuelsson AM, Argenton M, Dhonye H, Kalamatianos T, Poston L et al. Maternal obesity induced by diet in rats permanently influences central processes regulating food intake in offspring. PLoS One 2009; 4: e5870.

    Article  Google Scholar 

  52. Davidowa H, Plagemann A . Insulin resistance of hypothalamic arcuate neurons in neonatally overfed rats. Neuroreport 2007; 18: 521–524.

    Article  CAS  Google Scholar 

  53. Srinivasan M, Mitrani P, Sadhanandan G, Dodds C, Shbeir-ElDika S, Thamotharan S et al. A high-carbohydrate diet in the immediate postnatal life of rats induces adaptations predisposing to adult-onset obesity. J Endocrinol 2008; 197: 565–574.

    Article  CAS  Google Scholar 

  54. Horvath TL, Sarman B, García-Cáceres C, Enriori PJ, Sotonyi P, Shanabrough M et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc Natl Acad Sci USA 2010; 107: 14875–14880.

    Article  CAS  Google Scholar 

  55. Davidowa H, Li Y, Plagemann A . Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats. Eur J Neurosci 2003; 18: 613–621.

    Article  Google Scholar 

  56. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M et al. Hypothalamic proopiomelanocortin promotor methylation becomes altered by early overfeeding: an epigenetic model of obesity and the matabolic syndrome. J Physiol 2009; 587: 4963–4976.

    Article  CAS  Google Scholar 

  57. Larsen LH, Echwald SM, Sørensen TI, Andersen T, Wulff BS, Pedersen O . Prevalence of mutations and functional analyses of melanocortin 4 receptor variants identified among 750 men with juvenile-onset obesity. J Clin Endocrinol Metab 2005; 90: 219–224.

    Article  CAS  Google Scholar 

  58. Demiralp DO, Berberoglu M, Akar N . Melanocortin-4 receptor polymorphisms in Turkish pediatric obese patients. Clin Appl Thromb Hemost 2011; 17: 70–74.

    Article  CAS  Google Scholar 

  59. Jacobson P, Ukkola O, Rankinen T, Snyder EE, Leon AS, Rao DC et al. Melanocortin 4 receptor sequence variations are seldom a cause of human obesity: the Swedish Obese Subjects, the HERITAGE Family Study, and a Memphis cohort. J Clin Endocrinol Metab 2002; 87: 4442–4446.

    Article  CAS  Google Scholar 

  60. Nijenhuis WA, Garner KM, van Rozen RJ, Adan RA . Poor cell surface expression of human melanocortin-4 receptor mutations associated with obesity. J Biol Chem 2003; 278: 22939–22945.

    Article  CAS  Google Scholar 

  61. Vaisse C, Clement K, Durand E, Hercberg S, Guy-Grand B, Froguel P . Melanocortin-4 receptor mutations are a frequent and heterogeneous cause of morbid obesity. J Clin Invest 2000; 106: 253–262.

    Article  CAS  Google Scholar 

  62. Xiang Z, Proneth B, Dirain ML, Litherland SA, Haskell-Luevano C . Pharmacological characterization of 30 human melanocortin-4 receptor polymorphisms with the endogenous proopiomelanocortin-derived agonists, synthetic agonists, and the endogenous agouti-related protein antagonist. Biochemistry 2010; 49: 4583–4600.

    Article  CAS  Google Scholar 

  63. Biebermann H, Krude H, Elsner A, Chubanov V, Gudermann T, Grüters A . Autosomal-dominant mode of inheritance of a melanocortin-4 receptor mutation in a patient with severe early-onset obesity is due to a dominant-negative effect caused by receptor dimerization. Diabetes 2003; 52: 2984–2988.

    Article  CAS  Google Scholar 

  64. Gu W, Tu Z, Kleyn PW, Kissebah A, Duprat L, Lee J et al. Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes 1999; 48: 635–639.

    Article  CAS  Google Scholar 

  65. Ho G, MacKenzie RG . Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J Biol Chem 1999; 274: 35816–35822.

    Article  CAS  Google Scholar 

  66. Calton MA, Ersoy BA, Zhang S, Kane JP, Malloy MJ, Pullinger CR et al. Association of functionally significant Melanocortin-4 but not Melanocortin-3 receptor mutations with severe adult obesity in a large North American case-control study. Hum Mol Genet 2009; 18: 1140–1147.

    Article  CAS  Google Scholar 

  67. Valli-Jaakola K, Lipsanen-Nyman M, Oksanen L, Hollenberg AN, Kontula K, Bjørbaek C et al. Identification and characterization of melanocortin-4 receptor gene mutations in morbidly obese finnish children and adults. J Clin Endocrinol Metab 2004; 89: 940–945.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the German Federal Ministry for Education and Research within the German Competence Network on Obesity (BMBF, project funding reference numbers: 01GI1120A+B (February 2012–January 2015) and 01GI1401 (February 2015–January 2018)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Wabitsch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vollbach, H., Brandt, S., Lahr, G. et al. Prevalence and phenotypic characterization of MC4R variants in a large pediatric cohort. Int J Obes 41, 13–22 (2017). https://doi.org/10.1038/ijo.2016.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2016.161

This article is cited by

Search

Quick links