Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Epigenomic profiling in visceral white adipose tissue of offspring of mice exposed to late gestational sleep fragmentation

A Corrigendum to this article was published on 08 September 2015

Abstract

Background:

Sleep fragmentation during late gestation (LG-SF) is one of the major perturbations associated with sleep apnea and other sleep disorders during pregnancy. We have previously shown that LG-SF induces metabolic dysfunction in offspring mice during adulthood.

Objectives:

To investigate the effects of late LG-SF on metabolic homeostasis in offspring and to determine the effects of LG-SF on the epigenome of visceral white adipose tissue (VWAT) in the offspring.

Methods:

Time-pregnant mice were exposed to LG-SF or sleep control during LG (LG-SC) conditions during the last 6 days of gestation. At 24 weeks of age, lipid profiles and metabolic parameters were assessed in the offspring. We performed large-scale DNA methylation analyses using methylated DNA immunoprecipitation (MeDIP) coupled with microarrays (MeDIP-chip) in VWAT of 24-week-old LG-SF and LG-SC offspring (n=8 mice per group). Univariate multiple-testing adjusted statistical analyses were applied to identify differentially methylated regions (DMRs) between the groups. DMRs were mapped to their corresponding genes, and tested for potential overlaps with biological pathways and gene networks.

Results:

We detected significant increases in body weight (31.7 vs 28.8 g; P=0.001), visceral (642.1 vs 497.0 mg; P=0.002) and subcutaneous (293.1 vs 250.1 mg; P=0.001) fat mass, plasma cholesterol (110.6 vs 87.6 mg dl−1; P=0.001), triglycerides (87.3 vs 84.1 mg dl−1; P=0.003) and homeostatic model assessment—insulin resistance values (8.1 vs 6.1; P=0.007) in the LG-SF group. MeDIP analyses revealed that 2148 DMRs (LG-SF vs LG-SC; P<0.0001, model-based analysis of tilling-arrays algorithm). A large proportion of the DMR-associated genes have reported functions that are altered in obesity and metabolic syndrome, such as Cartpt, Akt2, Apoe, Insr1 and so on. Overrepresented pathways and gene networks were related to metabolic regulation and inflammatory response.

Conclusions:

Our findings show a major role for epigenomic regulation of pathways associated with the metabolic processes and inflammatory responses in VWAT. LG-SF-induced epigenetic alterations may underlie increases in the susceptibility to obesity and metabolic syndrome in the offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Yogev Y, Catalano PM . Pregnancy and obesity. Obstet Gynecol Clin North Am 2009; 36: 285–300.

    Article  PubMed  Google Scholar 

  2. Frederick IO, Qiu C, Sorensen TK, Enquobahrie DA, Williams MA . The prevalence and correlates of habitual snoring during pregnancy. Sleep Breath 2013; 17: 541–547.

    Article  PubMed  Google Scholar 

  3. Hutchison BL, Stone PR, McCowan LM, Stewart AW, Thompson JM, Mitchell EA . A postal survey of maternal sleep in late pregnancy. BMC Pregnancy Childbirth 2012; 12: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kapsimalis F, Kryger M . Sleep breathing disorders in the U.S. female population. J Women's Health (Larchmt) 2009; 18: 1211–1219.

    Article  Google Scholar 

  5. Sahota PK, Jain SS, Dhand R . Sleep disorders in pregnancy. Curr Opin Pulm Med 2003; 9: 477–483.

    Article  PubMed  Google Scholar 

  6. Calegare BF, Fernandes L, Tufik S, D'Almeida V . Biochemical, biometrical and behavioral changes in male offspring of sleep-deprived mice. Psychoneuroendocrinology 2010; 35: 775–784.

    Article  CAS  PubMed  Google Scholar 

  7. Khalyfa A, Mutskov V, Carreras A, Khalyfa AA, Hakim F, Gozal D . Sleep fragmentation during late gestation induces metabolic perturbations and epigenetic changes in adiponectin gene expression in male adult offspring mice. Diabetes 2014; 63: 3230–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Maccari S, Darnaudery M, Morley-Fletcher S, Zuena AR, Cinque C, Van Reeth O . Prenatal stress and long-term consequences: implications of glucocorticoid hormones. Neurosci Biobehav Rev 2003; 27: 119–127.

    Article  CAS  PubMed  Google Scholar 

  9. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI . Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 2009; 32: 447–470.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP . Pathophysiology of sleep apnea. Physiol Rev 2010; 90: 47–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tasali E, Ip MS . Obstructive sleep apnea and metabolic syndrome: alterations in glucose metabolism and inflammation. Proc Am Thorac Soc 2008; 5: 207–217.

    Article  PubMed  Google Scholar 

  12. Spiegel K, Tasali E, Leproult R, Van Cauter E . Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol 2009; 5: 253–261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu C, Enquobahrie D, Frederick IO, Abetew D, Williams MA . Glucose intolerance and gestational diabetes risk in relation to sleep duration and snoring during pregnancy: a pilot study. BMC Women's Health 2010; 10: 17.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tamashiro KL, Moran TH . Perinatal environment and its influences on metabolic programming of offspring. Physiol Behav 2010; 100: 560–566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ . Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med 2003; 167: 1540–1547.

    Article  PubMed  Google Scholar 

  16. Reichmann JP . Pregnancy-onset habitual snoring, gestational hypertension, and preeclampsia: prospective cohort study. Am J Obstet Gynecol 2013; 208: 507.

    Article  CAS  PubMed  Google Scholar 

  17. O'Brien LM, Bullough AS, Owusu JT, Tremblay KA, Brincat CA, Chames MC et al. Snoring during pregnancy and delivery outcomes: A Cohort Study. Sleep 2013; 36: 1625–1632.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Zouein E, Bourjeily G . Sleep patterns in pregnancy and fetal growth. Epidemiology (Cambridge, Mass) 2012; 23: 356.

    Article  Google Scholar 

  19. Hales CN, Barker DJ . Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 1992; 35: 595–601.

    Article  CAS  PubMed  Google Scholar 

  20. Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD . Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol 2011; 106: 272–280.

    Article  PubMed  Google Scholar 

  21. Gluckman PD, Hanson MA, Low FM . The role of developmental plasticity and epigenetics in human health. Birth Defects Res C Embryo Today 2011; 93: 12–18.

    Article  CAS  PubMed  Google Scholar 

  22. Godfrey KM, Inskip HM, Hanson MA . The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med 2011; 29: 257–265.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cahan P, Daley GQ . Origins and implications of pluripotent stem cell variability and heterogeneity. Nat Rev Mol Cell Biol 2013; 14: 357–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kilpinen H, Dermitzakis ET . Genetic and epigenetic contribution to complex traits. Hum Mol Genet 2012; 21: R24–R28.

    Article  CAS  PubMed  Google Scholar 

  25. Caserta F, Tchkonia T, Civelek VN, Prentki M, Brown NF, McGarry JD et al. Fat depot origin affects fatty acid handling in cultured rat and human preadipocytes. Am J Physiol Endocrinol Metab 2001; 280: E238–E247.

    Article  CAS  PubMed  Google Scholar 

  26. Vohl MC, Sladek R, Robitaille J, Gurd S, Marceau P, Richard D et al. A survey of genes differentially expressed in subcutaneous and visceral adipose tissue in men. Obes Res 2004; 12: 1217–1222.

    Article  CAS  PubMed  Google Scholar 

  27. Tchkonia T, Morbeck DE, Von Zglinicki T, Van Deursen J, Lustgarten J, Scrable H et al. Fat tissue, aging, and cellular senescence. Aging Cell 2010; 9: 667–684.

    Article  CAS  PubMed  Google Scholar 

  28. Pinnick KE, Karpe F . DNA methylation of genes in adipose tissue. Proc Nutr Soc 2011; 70: 57–63.

    Article  CAS  PubMed  Google Scholar 

  29. Nair D, Zhang SX, Ramesh V, Hakim F, Kaushal N, Wang Y et al. Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse. American J Respir Crit Care Med 2011; 184: 1305–1312.

    Article  CAS  Google Scholar 

  30. Mohn F, Weber M, Schubeler D, Roloff TC . Methylated DNA immunoprecipitation (MeDIP). Methods Mol Biol 2009; 507: 55–64.

    Article  CAS  PubMed  Google Scholar 

  31. Cortese R, Kwan A, Lalonde E, Bryzgunova O, Bondar A, Wu Y et al. Epigenetic markers of prostate cancer in plasma circulating DNA. Hum Mol Genet 2012; 21: 3619–3631.

    Article  CAS  PubMed  Google Scholar 

  32. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264.

    Article  PubMed  Google Scholar 

  33. Johnson WE, Li W, Meyer CA, Gottardo R, Carroll JS, Brown M et al. Model-based analysis of tiling-arrays for ChIP-chip. Proc Natl Acad Sci USA 2006; 103: 12457–12462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Team RCR . A language and environment for statistical computing. R Foundation for Statistical Computing: Vienna, Austria, 2014.

    Google Scholar 

  35. Zhu Y, Qi C, Korenberg JR, Chen XN, Noya D, Rao MS et al. Structural organization of mouse peroxisome proliferator-activated receptor gamma (mPPAR gamma) gene: alternative promoter use and different splicing yield two mPPAR gamma isoforms. Proc Natl Acad Sci USA 1995; 92: 7921–7925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM . mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–1234.

    Article  CAS  PubMed  Google Scholar 

  37. Fuentes E, Guzman-Jofre L, Moore-Carrasco R, Palomo I . Role of PPARs in inflammatory processes associated with metabolic syndrome (Review). Mol Med Rep 2013; 8: 1611–1616.

    Article  CAS  PubMed  Google Scholar 

  38. Abdelkarim M, Caron S, Duhem C, Prawitt J, Dumont J, Lucas A et al. The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways. J Biol Chem 2010; 285: 36759–36767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Maneschi E, Vignozzi L, Morelli A, Mello T, Filippi S, Cellai I et al. FXR activation normalizes insulin sensitivity in visceral preadipocytes of a rabbit model of MetS. J Endocrinol 2013; 218: 215–231.

    Article  CAS  PubMed  Google Scholar 

  40. Gorla-Bajszczak A, Siegrist-Kaiser C, Boss O, Burger AG, Meier CA . Expression of peroxisome proliferator-activated receptors in lean and obese Zucker rats. Eur J Endocrinol 2000; 142: 71–78.

    Article  CAS  PubMed  Google Scholar 

  41. Fruhbeck G . Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol Biol 2008; 456: 1–22.

    Article  PubMed  Google Scholar 

  42. Khalyfa A, Carreras A, Hakim F, Cunningham JM, Wang Y, Gozal D . Effects of late gestational high-fat diet on body weight, metabolic regulation and adipokine expression in offspring. Int J Obes (Lond) 2013; 37: 1481–1489.

    Article  CAS  Google Scholar 

  43. Murabayashi N, Sugiyama T, Zhang L, Kamimoto Y, Umekawa T, Ma N et al. Maternal high-fat diets cause insulin resistance through inflammatory changes in fetal adipose tissue. Eur J Obstet Gynecol Reprod Biol 2013; 169: 39–44.

    Article  CAS  PubMed  Google Scholar 

  44. Parlee SD, MacDougald OA . Maternal nutrition and risk of obesity in offspring: the Trojan horse of developmental plasticity. Biochim Biophys Acta 2014; 1842: 495–506.

    Article  CAS  PubMed  Google Scholar 

  45. Isganaitis E, Woo M, Ma H, Chen M, Kong W, Lytras A et al. Developmental programming by maternal insulin resistance: hyperinsulinemia, glucose intolerance, and dysregulated lipid metabolism in male offspring of insulin-resistant mice. Diabetes 2014; 63: 688–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Banke E, Riva M, Shcherbina L, Wierup N, Degerman E . Cocaine- and amphetamine-regulated transcript is expressed in adipocytes and regulate lipid- and glucose homeostasis. Regul Pept 2013; 182: 35–40.

    Article  CAS  PubMed  Google Scholar 

  47. Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL . A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 1999; 19: 7771–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 2003; 112: 197–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Fischer-Posovszky P, Tews D, Horenburg S, Debatin KM, Wabitsch M . Differential function of Akt1 and Akt2 in human adipocytes. Mol Cell Endocrinol 2012; 358: 135–143.

    Article  CAS  PubMed  Google Scholar 

  50. Shoelson SE, Lee J, Goldfine AB . Inflammation and insulin resistance. J Clin Invest 2006; 116: 1793–1801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Donath MY, Shoelson SE . Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 2011; 11: 98–107.

    Article  CAS  PubMed  Google Scholar 

  52. Chawla A, Nguyen KD, Goh YP . Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol 2011; 11: 738–749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ramesh V, Nair D, Zhang SX, Hakim F, Kaushal N, Kayali F et al. Disrupted sleep without sleep curtailment induces sleepiness and cognitive dysfunction via the tumor necrosis factor-alpha pathway. J Neuroinflammation 2012; 9: 91.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaushal N, Ramesh V, Gozal D . TNF-alpha and temporal changes in sleep architecture in mice exposed to sleep fragmentation. PloS one 2012; 7: e45610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Moller-Levet CS, Archer SN, Bucca G, Laing EE, Slak A, Kabiljo R et al. Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci USA 2013; 110: E1132–E1141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Khalyfa A, Carreras A, Almendros I, Hakim F, Gozal D . Sex Dimorphism in Late Gestational Sleep Fragmentation and Metabolic Dysfunction in Offspring Mice. Sleep 2014. e-pub ahead of print 17 October 2014 pii:sp-00273-14.

Download references

Acknowledgements

This work was supported by the Herbert T Abelson Chair in Pediatrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Gozal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cortese, R., Khalyfa, A., Bao, R. et al. Epigenomic profiling in visceral white adipose tissue of offspring of mice exposed to late gestational sleep fragmentation. Int J Obes 39, 1135–1142 (2015). https://doi.org/10.1038/ijo.2015.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2015.38

This article is cited by

Search

Quick links