Review | Published:

Fetuin-A: a novel link between obesity and related complications

International Journal of Obesity volume 39, pages 734741 (2015) | Download Citation

Subjects

Abstract

Fetuin-A (FetA) is a 64-kDa glycoprotein that is secreted from both the liver and adipose tissue. Circulating FetA is elevated in obesity and related disorders including type 2 diabetes mellitus, nonalcoholic fatty liver disease and the metabolic syndrome; and a FetA-related parameter, caliciprotein particle, is highly relevant to vascular calcification in overweight/obese patients with chronic kidney disease. FetA level is also associated with impaired insulin sensitivity and glucose tolerance. Accumulating evidence suggests that elevated FetA level causes impaired glycemic control, as FetA has been implicated in impairment of insulin receptor signaling, toll-like receptor 4 activation, macrophage migration and polarization, adipocyte dysfunction, hepatocyte triacylglycerol accumulation and liver inflammation and fibrosis. Weight loss, aerobic exercise, metformin and pioglitazone have each been shown to be effective for reducing FetA level.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    , , , , , et al. Fetuin-A and incident diabetes mellitus in older persons. JAMA 2008; 300: 182–188.

  2. 2.

    , , , , , et al. Plasma fetuin-A levels and the risk of type 2 diabetes. Diabetes 2008; 57: 2762–2767.

  3. 3.

    , , , , , et al. α2-Heremans-Schmid glycoprotein/fetuin-A is associated with insulin resistance and fat accumulation in the liver in humans. Diabetes Care 2006; 29: 853–857.

  4. 4.

    . Fetuin, a new globulin isolated from serum. Nature 1944; 154: 575–575.

  5. 5.

    , , , , , et al. Fetuin-B, a second member of the fetuin family in mammals. Biochem J 2000; 350: 589–597.

  6. 6.

    , , . Charakterisierung eines niedermolekularen α 2-Mukoids aus Humanserum. Naturwissenschaften 1962; 49: 15–15.

  7. 7.

    . Les globulines seriques du systeme gamma: leur nature et leur pathologie In: Arscia. Brussels, 1960.

  8. 8.

    , . Preparation and properties of Zn-α2-glycoprotein of normal human plasma. J Biol Chem 1961; 236: 1066–1074.

  9. 9.

    , , , , , . Elevated Fetuin-A concentrations in morbid obesity decrease after dramatic weight loss. J Clin Endocrinol Metab 2010; 95: 4877–4881.

  10. 10.

    , , , , , . Association between human fetuin-A and the metabolic syndrome data from the heart and soul study. Circulation 2006; 113: 1760–1767.

  11. 11.

    , , , , , . Increased fetuin-A concentrations in impaired glucose tolerance with or without nonalcoholic fatty liver disease, but not impaired fasting glucose. J Clin Endocrinol Metab 2012; 97: 4717–4723.

  12. 12.

    , , , , , et al. Fetuin-A induces cytokine expression and suppresses adiponectin production. PLoS One 2008; 3: e1765.

  13. 13.

    , , , , , et al. The serum protein α2–Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest 2003; 112: 357–366.

  14. 14.

    , , , , , et al. Fetuin-mineral complex reflects extraosseous calcification stress in CKD. J Am Soc Nephrol 2010; 21: 1998–2007.

  15. 15.

    , , , , , et al. The effects of caloric restriction on Fetuin‐A and cardiovascular risk factors in rats and humans: a randomized controlled trial. Clin Endocrinol (Oxf) 2013; 79: 356–363.

  16. 16.

    , , , . Exercise-Induced Lowering of Fetuin-A May Increase Hepatic Insulin Sensitivity. Med Sci Sports Exerc 2014; 46: 2085–2090.

  17. 17.

    , , , , , et al. Fetuin A in nonalcoholic fatty liver disease: in vivo and in vitro studies. Eur J Endocrinol 2012; 166: 503–510.

  18. 18.

    , , , , , et al. Effects of pioglitazone on serum fetuin-A levels in patients with type 2 diabetes mellitus. Metabolism 2008; 57: 1248–1252.

  19. 19.

    , . The role of hepatokines in metabolism. Nat Rev Endocrinol 2013; 9: 144–152.

  20. 20.

    , , . Fetuin-A and angiopoietins in obesity and type 2 diabetes mellitus. Endocrine 2012; 42: 496–505.

  21. 21.

    , , , , , . Sex-specific association of fetuin-A with type 2 diabetes in older community-dwelling adults: the Rancho Bernardo study. Diabetes Care 2013; 36: 1994–2000.

  22. 22.

    , , , , , et al. Serum fetuin‐A in metabolic and inflammatory pathways in patients with myocardial infarction. Eur J Clin Invest 2011; 41: 703–709.

  23. 23.

    , , , , , et al. Fetuin-A and change in body composition in older persons. J Clin Endocrinol Metab 2009; 94: 4492–4498.

  24. 24.

    , , , , , et al. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab 2010; 299: E506–E515.

  25. 25.

    , , , , . AHSG gene variant is associated with leanness among Swedish men. Hum Genet 2005; 117: 54–60.

  26. 26.

    , , , , , et al. Causal relationship between body mass index and fetuin‐A level in the asian population: a bidirectional mendelian randomization study. Clin Endocrinol (Oxf) 2013; 81: 197–203.

  27. 27.

    , , , . Plasma levels of fetuin-A and hepatic enzymes and risk of type 2 diabetes in women in the US. Diabetes 2013; 62: 49–55.

  28. 28.

    , , , , , et al. Association of fetuin-A with incident diabetes mellitus in community-living older adults: the Cardiovascular Health Study. Circulation 2012; 125: 2316–2322.

  29. 29.

    , , , , , et al. Correlation of maternal serum fetuin/alpha2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes. Eur J Endocrinol 2002; 147: 243–248.

  30. 30.

    , , , . Pathophysiology and aetiology of impaired fasting glycaemia and impaired glucose tolerance: does it matter for prevention and treatment of type 2 diabetes? Diabetologia 2009; 52: 1714–1723.

  31. 31.

    , , , , , et al. Impact of the adipokine adiponectin and the hepatokine fetuin-A on the development of type 2 diabetes: Prospective Cohort-and Cross-Sectional Phenotyping Studies. PLoS One 2014; 9: e92238.

  32. 32.

    , , , , , et al. AHSG tag single nucleotide polymorphisms associate with type 2 diabetes and dyslipidemia studies of metabolic traits in 7,683 White Danish subjects. Diabetes 2008; 57: 1427–1432.

  33. 33.

    , , , , . A synonymous coding polymorphism in the α2-Heremans-Schmid glycoprotein gene is associated with type 2 diabetes in French Caucasians. Diabetes 2005; 54: 2477–2481.

  34. 34.

    , , , , , et al. Genetically elevated fetuin-A levels, fasting glucose levels, and risk of type 2 diabetes: the Cardiovascular Health study. Diabetes Care 2013; 36: 3121–3127.

  35. 35.

    , . Circulating fetuin-A and free fatty acids interact to predict insulin resistance in humans. Nat Med 2013; 19: 394–395.

  36. 36.

    , , , , , et al. Fetuin-A, type 2 diabetes, and risk of cardiovascular disease in older adults: the Cardiovascular Health study. Diabetes Care 2013; 36: 1222–1228.

  37. 37.

    , , , , . The association of fetuin-A with cardiovascular disease mortality in older community-dwelling adults: the Rancho Bernardo study. J Am Coll Cardiol 2012; 59: 1688–1696.

  38. 38.

    , , , , , et al. Fetuin-A levels are increased in patients with type 2 diabetes and peripheral arterial disease. Diabetes Care 2011; 34: 156–161.

  39. 39.

    , , , , , et al. Association of lower plasma fetuin-a levels with peripheral arterial disease in type 2 diabetes. Diabetes Care 2010; 33: 408–410.

  40. 40.

    , , , , . Association of lower plasma fetuin-A levels with peripheral arterial disease in type 2 diabetes response to Eraso et al. Diabetes Care 2010; 33: e55–e55.

  41. 41.

    , , , , , et al. Serum fetuin-A is correlated with metabolic syndrome in middle-aged and elderly Chinese. Atherosclerosis 2011; 216: 180–186.

  42. 42.

    , , , , , et al. Association of serum fetuin A with truncal obesity and dyslipidemia in non-diabetic hemodialysis patients. Eur J Endocrinol 2009; 160: 777–783.

  43. 43.

    , , , , , et al. Genomewide search for type 2 diabetes–susceptibility genes in French Whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2–diabetes locus on chromosome 1q21–q24. Am J Hum Genet 2000; 67: 1470–1480.

  44. 44.

    , , , , , et al. Hepatic steatosis and PNPLA3 I148M variant are associated serum Fetuin‐A independently of insulin resistance. Eur J Clin Invest 2014; 44: 627–633.

  45. 45.

    , , , , , et al. Serum fetuin A/α2HS-glycoprotein levels in patients with non-alcoholic fatty liver disease: relation with liver fibrosis. Ann Clin Biochem 2010; 47: 549–553.

  46. 46.

    , , , , , et al. Plasma fetuin‐A is associated with endothelial dysfunction and subclinical atherosclerosis in subjects with nonalcoholic fatty liver disease. Clin Endocrinol (Oxf) 2013; 78: 712–717.

  47. 47.

    , , , , , et al. Fetuin‐A negatively correlates with liver and vascular fibrosis in nonalcoholic fatty liver disease subjects. Liver Int; e-pub ahead of print 26 February 2014; doi:10.1111/liv.12478.

  48. 48.

    , , , , . Arterial calcifications, arterial stiffness, and cardiovascular risk in end-stage renal disease. Hypertension 2001; 38: 938–942.

  49. 49.

    , , , , . Vascular calcification: from pathophysiology to biomarkers. Clin Chim Acta 2014; 438C: 401–414.

  50. 50.

    , , , , , et al. Serum fetuin-A in nondialyzed patients with diabetic nephropathy: relationship with coronary artery calcification. Kidney Int 2005; 67: 1070–1077.

  51. 51.

    , , , , , . Phosphorylated fetuin-A-containing calciprotein particles are associated with aortic stiffness and a procalcific milieu in patients with pre-dialysis CKD. Nephrol Dial Transplant 2011; 27: 1957–1966.

  52. 52.

    , , , , , et al. Nanoparticle-based test measures overall propensity for calcification in serum. J Am Soc Nephrol 2012; 23: 1744–1752.

  53. 53.

    , , , , , et al. Serum calcification propensity predicts all-cause mortality in predialysis CKD. J Am Soc Nephrol 2013; 25: 339–348.

  54. 54.

    , , , , , et al. Retention of fetuin-A in renal tubular lumen protects the kidney from nephrocalcinosis in rats. Am J Physiol Renal Physiol 2013; 304: F751–F760.

  55. 55.

    , , , . Differential expression of insulin receptor tyrosine kinase inhibitor (fetuin) gene in a model of diet-induced obesity. Life Sci 1998; 63: 145–153.

  56. 56.

    , , , . Raised circulating fetuin-A after 28-day overfeeding in healthy humans. Diabetes Care 2014; 37: e15–e16.

  57. 57.

    , , , , , . NF-kappaB mediates lipid-induced fetuin-A expression in hepatocytes that impairs adipocyte function effecting insulin resistance. Biochem J 2010; 429: 451–462.

  58. 58.

    , , , , , et al. Salsalate and adiponectin ameliorate hepatic steatosis by inhibition of the hepatokine fetuin-A. Biochem Pharmacol 2013; 86: 960–969.

  59. 59.

    , , , , , et al. Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 2001; 86: 1930–1935.

  60. 60.

    , , , , , et al. A sustained increase in plasma NEFA upregulates the Toll-like receptor network in human muscle. Diabetologia 2013; 57: 582–591.

  61. 61.

    , , , , , et al. High glucose induces transactivation of the alpha2-HS glycoprotein gene through the ERK1/2 signaling pathway. J Atheroscler Thromb 2009; 16: 448–456.

  62. 62.

    , , , , , . Endoplasmic reticulum stress induces the expression of fetuin-A to develop insulin resistance. Endocrinology 2012; 153: 2974–2984.

  63. 63.

    , , , , , et al. Adipocyte fetuin-a contributes to macrophage migration into adipose tissue and polarization of macrophages. J Biol Chem 2013; 288: 28324–28330.

  64. 64.

    , , , , , et al. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol Endocrinol 1993; 7: 1445–1455.

  65. 65.

    , , , , , et al. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 1989; 58: 631–640.

  66. 66.

    , , , , , et al. The nucleotide and partial amino acid sequences of rat fetuin. Eur J Biochem 1992; 204: 523–529.

  67. 67.

    , , , . Bovine fetuin is an inhibitor of insulin receptor tyrosine kinase. Life Sci 1997; 61: 1583–1592.

  68. 68.

    , , , , , . Fetuin-null mice are protected against obesity and insulin resistance associated with aging. Biochem Biophys Res Commun 2006; 350: 437–443.

  69. 69.

    , , , , , et al. Improved insulin sensitivity and resistance to weight gain in mice null for the Ahsg gene. Diabetes 2002; 51: 2450–2458.

  70. 70.

    , , , , , . Recombinant human alpha 2-HS glycoprotein inhibits insulin-stimulated mitogenic pathway without affecting metabolic signalling in Chinese hamster ovary cells overexpressing the human insulin receptor. Cell Signal 1996; 8: 567–573.

  71. 71.

    , , , , , . α2-Heremans schmid glycoprotein inhibits insulin-stimulated Elk-1 phosphorylation, but not glucose transport, in rat adipose cells 1. Endocrinology 1998; 139: 4147–4154.

  72. 72.

    , , . Ahsg-fetuin blocks the metabolic arm of insulin action through its interaction with the 95-kD β-subunit of the insulin receptor. Cell Signal 2013; 25: 981–988.

  73. 73.

    , , , , , et al. Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 2012; 18: 1279–1285.

  74. 74.

    , , , , . 695 Fetuin-a binding to TLR4 regulates NASH and fibrosis: the role of TRIF. Gastroenterology 2014; 146: S-922.

  75. 75.

    , , . Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–184.

  76. 76.

    , , , , , et al. α2-Heremans–Schmid glycoprotein gene polymorphisms are associated with adipocyte insulin action. Diabetologia 2004; 47: 1974–1979.

  77. 77.

    , , . Polymorphism of the AHSG gene is associated with increased adipocyte β2-adrenoceptor function. J Lipid Res 2005; 46: 2278–2281.

  78. 78.

    , , , , , et al. Two patterns of adipokine and other biomarker dynamics in a long-term weight loss intervention. Diabetes Care 2012; 35: 342–349.

  79. 79.

    , . Fetuin-A and its relation to metabolic syndrome and fatty liver disease in obese children before and after weight loss. J Clin Endocrinol Metab 2008; 93: 4479–4485.

  80. 80.

    , , , , , et al. Lower fetuin-A, retinol binding protein 4 and several metabolites after gastric bypass compared to sleeve gastrectomy in patients with type 2 diabetes. PLoS One 2014; 9: e96489.

  81. 81.

    , , , , . The effect of 6-weeks of aerobic exercise training on serum fetuin-A levels in non-diabetic obese women. Exp Clin Endocrinol Diabetes 2010; 118: 754–756.

  82. 82.

    , , , , , et al. Effects of a three‐month combined exercise programme on fibroblast growth factor 21 and fetuin‐A levels and arterial stiffness in obese women. Clin Endocrinol (Oxf) 2011; 75: 464–469.

  83. 83.

    , , , , , et al. Fetuin-A is linked to improved glucose tolerance after short-term exercise training in nonalcoholic fatty liver disease. J Appl Physiol 2013; 115: 988–994.

  84. 84.

    , , . AMP-activated protein kinase (AMPK): does this master regulator of cellular energy state distinguish insulin sensitive from insulin resistant obesity? Curr Obes Rep 2014; 3: 248–255.

  85. 85.

    , , , . Secretion of a major phosphorylated glycoprotein by hepatocytes. Characterization of specific antibodies and investigations of the processing, excretion kinetics, and phosphorylation. J Biol Chem 1985; 260: 15965–15971.

  86. 86.

    , , , , , et al. Plasma fetuin-A and phosphofetuin-A (Ser312) responses to a single or short-term repeated bout of exercise in obese and normal-weight individuals (1028.2). FASEB J 2014; 28: 1028.2.

  87. 87.

    , , , , . Toll-like receptor 2/4 links to free fatty acid-induced inflammation and β-cell dysfunction. J Leukoc Biol 2014; 95: 47–52.

Download references

Author information

Affiliations

  1. Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA

    • J F Trepanowski
    • , J Mey
    •  & K A Varady

Authors

  1. Search for J F Trepanowski in:

  2. Search for J Mey in:

  3. Search for K A Varady in:

Competing interests

The authors declare no conflict of interest.

Corresponding author

Correspondence to J F Trepanowski.

About this article

Publication history

Received

Revised

Accepted

Published

DOI

https://doi.org/10.1038/ijo.2014.203

Further reading