Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development

Abstract

Background:

Obesity in women of childbearing age is increasing at an alarming rate. Growing evidence shows that maternal obesity induces detrimental effects on offspring health, including pre-disposition to obesity. We have shown that maternal obesity increases fetal intramuscular adipogenesis at mid-gestation. However, the mechanisms are poorly understood. MicroRNAs (miRNAs) regulate mRNA stability. We hypothesized that maternal obesity alters fetal muscle miRNA expression, thereby influencing intramuscular adipogenesis.

Methods:

Non-pregnant ewes received a control diet (Con, fed 100% of National Research Council (NRC) recommendations, n=6) or obesogenic diet (OB; 150% NRC recommendations, n=6) from 60 days before to 75 days after conception when the fetal longissimus dorsi (LD) muscle was sampled and miRNA expression analyzed by miRNA microarray. One of miRNAs with differential expression between Con and OB fetal muscle, let-7g, was further tested for its role in adipogenesis and cell proliferation in C3H10T1/2 cells.

Results:

A total of 155 miRNAs were found with a signal above 500, among which, three miRNAs, hsa-miR-381, hsa-let-7g and bta-miR-376d, were differentially expressed between Con and OB fetuses, and confirmed by quantitative real-time PCR (QRT-PCR) analyses. Reduced expression of miRNA let-7g, an abundantly expressed miRNA, in OB fetal muscle was correlated with higher expression of its target genes. Overexpression of let-7g in C3H10T1/2 cells reduced their proliferation rate. Expression of adipogenic markers decreased in cells overexpressing let-7g, and the formation of adipocytes was also reduced. Overexpression of let-7g decreased expression of inflammatory cytokines.

Conclusion:

Fetal muscle miRNA expression was altered due to maternal obesity, and let-7g downregulation may enhance intramuscular adipogenesis during fetal muscle development in the setting of maternal obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Flegal KM, Carroll MD, Ogden CL, Curtin LR . Prevalence and trends in obesity among US adults, 1999-2008. JAMA 2010; 303: 235–241.

    CAS  PubMed  Google Scholar 

  2. Ogden CL, Carroll MD, Curtin LR, Lamb MM, Flegal KM . Prevalence of high body mass index in US children and adolescents, 2007-2008. JAMA 2010; 303: 242–249.

    Article  CAS  PubMed  Google Scholar 

  3. Nathanielsz PW . Animal models that elucidate basic principles of the developmental origins of adult diseases. Ilar J 2006; 47: 73–82.

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJ . Fetal programming of coronary heart disease. Trends Endocrinol Metab 2002; 13: 364–368.

    Article  CAS  PubMed  Google Scholar 

  5. Rooyackers OE, Nair KS . Hormonal regulation of human muscle protein metabolism. Annu Rev Nutr 1997; 17: 457–485.

    Article  CAS  PubMed  Google Scholar 

  6. Zhu MJ, Ford SP, Nathanielsz PW, Du M . Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle. Biol Reprod 2004; 71: 1968–1973.

    Article  CAS  PubMed  Google Scholar 

  7. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  8. Shang YC, Zhang C, Wang SH, Xiong F, Zhao CP, Peng FN et al. Activated beta-catenin induces myogenesis and inhibits adipogenesis in BM-derived mesenchymal stromal cells. Cytotherapy 2007; 9: 667–681.

    Article  CAS  PubMed  Google Scholar 

  9. Artaza JN, Bhasin S, Magee TR, Reisz-Porszasz S, Shen R, Groome NP et al. Myostatin inhibits myogenesis and promotes adipogenesis in C3H 10 T(1/2) mesenchymal multipotent cells. Endocrinology 2005; 146: 3547–3557.

    Article  CAS  PubMed  Google Scholar 

  10. Du M, Yin J, Zhu MJ . Cellular signaling pathways regulating the initial stage of adipogenesis and marbling of skeletal muscle. Meat Sci 2010; 86: 103–109.

    Article  CAS  PubMed  Google Scholar 

  11. Yan X, Zhu MJ, Xu W, Tong JF, Ford SP, Nathanielsz PW et al. Up-regulation of Toll-like receptor 4/nuclear factor-kappaB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology 2010; 151: 380–387.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu MJ, Han B, Tong J, Ma C, Kimzey JM, Underwood KR et al. AMP-activated protein kinase signalling pathways are down regulated and skeletal muscle development impaired in fetuses of obese, over-nourished sheep. J Physiol 2008; 586: 2651–2664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tong J, Zhu MJ, Underwood KR, Hess BW, Ford SP, Du M . AMP-activated protein kinase and adipogenesis in sheep fetal skeletal muscle and 3T3-L1 cells. J Anim Sci 2008; 86: 1296–1305.

    Article  CAS  PubMed  Google Scholar 

  14. Tong JF, Yan X, Zhu MJ, Ford SP, Nathanielsz PW, Du M . Maternal obesity downregulates myogenesis and beta-catenin signaling in fetal skeletal muscle. Am J Physiol Endocrinol Metab 2009; 296: E917–E924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yan X, Huang Y, Zhao JX, Long NM, Uthlaut AB, Zhu MJ et al. Maternal obesity-impaired insulin signaling in sheep and induced lipid accumulation and fibrosis in skeletal muscle of offspring. Biol Reprod 2011; 85: 172–178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar MS, Erkeland SJ . Pester RE, Chen CY, Ebert MS, Sharp PA et al. Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 2008; 105: 3903–3908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T . Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 2007; 39: 673–677.

    Article  CAS  PubMed  Google Scholar 

  18. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB . Prediction of mammalian microRNA targets. Cell 2003; 115: 787–798.

    Article  CAS  PubMed  Google Scholar 

  19. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000; 403: 901–906.

    Article  CAS  PubMed  Google Scholar 

  20. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000; 408: 86–89.

    Article  CAS  PubMed  Google Scholar 

  21. Boyerinas B, Park SM, Hau A, Murmann AE, Peter ME . The role of let-7 in cell differentiation and cancer. Endocr Relat Cancer 2010; 17: F19–F36.

    Article  CAS  PubMed  Google Scholar 

  22. Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K et al. Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are Associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics 2006; 3: 317–324.

    CAS  PubMed  Google Scholar 

  23. Reya T, Morrison SJ, Clarke MF, Weissman IL . Stem cells, cancer, and cancer stem cells. Nature 2001; 414: 105–111.

    Article  CAS  PubMed  Google Scholar 

  24. Sanson DW, West TR, Tatman WR, Riley ML, Judkins MB, Moss GE . Relationship of body composition of mature ewes with condition score and body weight. J Anim Sci 1993; 71: 1112–1116.

    Article  CAS  PubMed  Google Scholar 

  25. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao J, Yue W, Zhu MJ, Sreejayan N, Du M . AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun 2010; 395: 146–151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Marchildon F, St-Louis C, Akter R, Roodman V, Wiper-Bergeron NL . Transcription factor Smad3 is required for the inhibition of adipogenesis by retinoic acid. J Biol Chem 2010; 285: 13274–13284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Konieczny SF, Emerson CP . 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell 1984; 38: 791–800.

    Article  CAS  PubMed  Google Scholar 

  29. Taylor SM, Jones PA . Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell 1979; 17: 771–779.

    Article  CAS  PubMed  Google Scholar 

  30. Hamm JK, Park BH, Farmer SR . A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. J Biol Chem 2001; 276: 18464–18471.

    Article  CAS  PubMed  Google Scholar 

  31. Chen J, Feilotter HE, Pare GC, Zhang X, Pemberton JG, Garady C et al. MicroRNA-193b represses cell proliferation and regulates cyclin D1 in melanoma. Am J Pathol 2010; 176: 2520–2529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao JX, Yue WF, Zhu MJ, Du M . AMP-activated protein kinase regulates beta-catenin transcription via histone deacetylase 5. J Biol Chem 2011; 286: 16426–16434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhu MJ, Ford SP, Means WJ, Hess BW, Nathanielsz PW, Du M . Maternal nutrient restriction affects properties of skeletal muscle in offspring. J Physiol 2006; 575: 241–250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rooney KB, Ainge H, Thompson C, Ozanne SE . A systematic review on animal models of maternal high fat feeding and offspring glycaemic control. Int J Obes 2011; 35: 325–335.

    Article  Google Scholar 

  35. Taylor PD, Poston L . Developmental programming of obesity in mammals. Experimental Physiol 2007; 92: 287–298.

    Article  CAS  Google Scholar 

  36. Wei M, Zhu L, Li Y, Chen W, Han B, Wang Z et al. Knocking down cyclin D1b inhibits breast cancer cell growth and suppresses tumor development in a breast cancer model. Cancer Sci 2011.

  37. Wang H, Iakova P, Wilde M, Welm A, Goode T, Roesler WJ et al. C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. Mol Cell 2001; 8: 817–828.

    Article  CAS  PubMed  Google Scholar 

  38. Kubben FJ, Peeters-Haesevoets A, Engels LG, Baeten CG, Schutte B, Arends JW et al. Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 1994; 35: 530–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lan FF, Wang H, Chen YC, Chan CY, Ng SS, Li K et al. Hsa-let-7 g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c-Myc and upregulation of p16(INK4A). Int J Cancer 2011; 128: 319–331.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SJ, Lee YS, Zimmers TA, Soleimani A, Matzuk MM, Tsuchida K et al. Regulation of muscle mass by follistatin and activins. Mol Endocrinol 2010; 24: 1998–2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gilson H, Schakman O, Kalista S, Lause P, Tsuchida K, Thissen JP . Follistatin induces muscle hypertrophy through satellite cell proliferation and inhibition of both myostatin and activin. Am J Physiol Endocrinol Metab 2009; 297: E157–E164.

    Article  CAS  PubMed  Google Scholar 

  42. Benabdallah BF, Bouchentouf M, Rousseau J, Tremblay JP . Overexpression of follistatin in human myoblasts increases their proliferation and differentiation, and improves the graft success in SCID mice. Cell Transplant 2009; 18: 709–718.

    Article  CAS  PubMed  Google Scholar 

  43. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 52361–52365.

    Article  CAS  PubMed  Google Scholar 

  44. Sun T, Fu M, Bookout AL, Kliewer SA, Mangelsdorf DJ . MicroRNA let-7 regulates 3T3-L1 adipogenesis. Mol Endocrinol 2009; 23: 925–931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was supported by NIH 1R01HD067449, 1R03HD057506, and USDA-NRI 2008–35206–18826.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Du.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, X., Huang, Y., Zhao, JX. et al. Maternal obesity downregulates microRNA let-7g expression, a possible mechanism for enhanced adipogenesis during ovine fetal skeletal muscle development. Int J Obes 37, 568–575 (2013). https://doi.org/10.1038/ijo.2012.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.69

Keywords

This article is cited by

Search

Quick links