Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors

Abstract

Background and Aims:

Diet-induced obesity (DIO) is an excellent model for examining human obesity comprising both genotypic and environmental (diet) factors. Decreased responsiveness to peripheral satiety signaling may be responsible for the hyperphagia in this model. In this study, we investigated responses to nutrient-induced satiation in outbred DIO and DIO-resistant (DR) rats fed a high-energy/high-fat (HE/HF) diet as well as intestinal satiety peptide content, intestinal nutrient-responsive receptor abundance and vagal anorectic receptor expression.

Methods:

Outbred DIO and DR rats fed a HE/HF diet were tested for short-term feeding responses following nutrient (glucose and intralipid (IL)) gastric loads. Gene and protein expressions of intestinal satiety peptides and fatty acid-responsive receptors were examined from isolated proximal intestinal epithelial cells and cholecystokinin-1 receptor (CCK-1R) and leptin receptor (LepR) mRNA from the nodose ganglia of DIO and DR animals.

Results:

DIO rats were less responsive to IL- (P<0.05) but not glucose-induced suppression of food intake compared with DR rats. DIO rats exhibited decreased CCK, peptide YY (PYY) and glucagon-like peptide-1 (GLP-1; P<0.05 for each) protein expression compared with DR rats. Also, DIO rats expressed more G-protein-coupled receptor 40 (GPR40; P<0.0001), GPR41 (P<0.001) and GPR120 (P<0.01) relative to DR rats. Finally, there were no differences in mRNA expression for CCK-1R and LepR in the nodose ganglia of DIO and DR rats.

Conclusions:

Development of DIO may be partly due to decreased fat-induced satiation through low levels of endogenous satiety peptides, and changes in intestinal nutrient receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Archer ZA, Mercer JG . Brain responses to obesogenic diets and diet-induced obesity. Proc Nutr Soc 2007; 66: 124–130.

    Article  CAS  PubMed  Google Scholar 

  2. Levin BE . Sympathetic activity, age, sucrose preference, and diet-induced obesity. Obes Res 1993; 1: 281–287.

    Article  CAS  PubMed  Google Scholar 

  3. Bouret SG, Gorski JN, Patterson CM, Chen S, Levin BE, Simerly RB . Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cell Metab 2008; 7: 179–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shin AC, Townsend RL, Patterson LM, Berthoud HR . ‘Liking’ and ‘wanting’ of sweet and oily food stimuli as affected by high-fat diet-induced obesity, weight loss, leptin, and genetic predisposition. Am J Physiol Regul Integr Comp Physiol 2011; 301: R1267–R1280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hyland NP, Rybicka JM, Ho W, Pittman QJ, Macnaughton WK, Sharkey KA . Adaptation of intestinal secretomotor function and nutrient absorption in response to diet-induced obesity. Neurogastroenterol Motil 2010; 22: 602-e171.

    Article  PubMed  Google Scholar 

  6. Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA . Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav 1999; 66: 621–626.

    Article  CAS  PubMed  Google Scholar 

  7. De Jonghe BC, Hajnal A, Covasa M . Increased oral and decreased intestinal sensitivity to sucrose in obese, prediabetic CCK-A receptor-deficient OLETF rats. Am J Physiol Regul Integr Comp Physiol 2005; 288: R292–R300.

    Article  CAS  PubMed  Google Scholar 

  8. Brenner L, Yox DP, Ritter RC . Suppression of sham feeding by intraintestinal nutrients is not correlated with plasma cholecystokinin elevation. Am J Physiol 1993; 264: R972–R976.

    CAS  PubMed  Google Scholar 

  9. Little TJ, Feltrin KL, Horowitz M, Smout AJ, Rades T, Meyer JH et al. Dose-related effects of lauric acid on antropyloroduodenal motility, gastrointestinal hormone release, appetite, and energy intake in healthy men. Am J Physiol Regul Integr Comp Physiol 2005; 289: R1090–R1098.

    Article  CAS  PubMed  Google Scholar 

  10. Little TJ, Feltrin KL, Horowitz M, Meyer JH, Wishart J, Chapman IM et al. A high-fat diet raises fasting plasma CCK but does not affect upper gut motility, PYY, and ghrelin, or energy intake during CCK-8 infusion in lean men. Am J Physiol Regul Integr Comp Physiol 2008; 294: R45–R51.

    Article  CAS  PubMed  Google Scholar 

  11. Williams DL, Hyvarinen N, Lilly N, Kay K, Dossat A, Parise E et al. Maintenance on a high-fat diet impairs the anorexic response to glucagon-like-peptide-1 receptor activation. Physiol Behav 2011; 103: 557–564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 2006; 147: 3–8.

    Article  CAS  PubMed  Google Scholar 

  13. Covasa M, Ritter RC . Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides 1998; 19: 1407–1415.

    Article  CAS  PubMed  Google Scholar 

  14. Zwirska-Korczala K, Konturek SJ, Sodowski M, Wylezol M, Kuka D, Sowa P et al. Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome. J Physiol Pharmacol 2007; 58 (Suppl 1): 13–35.

    PubMed  Google Scholar 

  15. Verdich C, Toubro S, Buemann B, Lysgard Madsen J, Juul Holst J, Astrup A . The role of postprandial releases of insulin and incretin hormones in meal-induced satiety--effect of obesity and weight reduction. Int J Obes Relat Metab Disord 2001; 25: 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  16. Feinle C, Chapman IM, Wishart J, Horowitz M . Plasma glucagon-like peptide-1 (GLP-1) responses to duodenal fat and glucose infusions in lean and obese men. Peptides 2002; 23: 1491–1495.

    Article  CAS  PubMed  Google Scholar 

  17. French SJ, Murray B, Rumsey RD, Sepple CP, Read NW . Preliminary studies on the gastrointestinal responses to fatty meals in obese people. Int J Obes Relat Metab Disord 1993; 17: 295–300.

    CAS  PubMed  Google Scholar 

  18. le Roux CW, Aylwin SJ, Batterham RL, Borg CM, Coyle F, Prasad V et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 2006; 243: 108–114.

    Article  PubMed  Google Scholar 

  19. Swartz TD, Duca FA, Covasa M . Differential feeding behavior and neuronal responses to CCK in obesity-prone and -resistant rats. Brain Res 2010; 1308: 79–86.

    Article  CAS  PubMed  Google Scholar 

  20. Liou AP, Lu X, Sei Y, Zhao X, Pechhold S, Carrero RJ et al. The G-protein-coupled receptor GPR40 directly mediates long-chain fatty acid-induced secretion of cholecystokinin. Gastroenterology 2011; 140: 903–912.

    Article  CAS  PubMed  Google Scholar 

  21. Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 2005; 11: 90–94.

    Article  CAS  PubMed  Google Scholar 

  22. Samuel BS, Shaito A, Motoike T, Rey FE, Backhed F, Manchester JK et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc Natl Acad Sci USA 2008; 105: 16767–16772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lan H, Hoos LM, Liu L, Tetzloff G, Hu W, Abbondanzo SJ et al. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes 2008; 57: 2999–3006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tanaka T, Katsuma S, Adachi T, Koshimizu TA, Hirasawa A, Tsujimoto G . Free fatty acids induce cholecystokinin secretion through GPR120. Naunyn Schmiedebergs Arch Pharmacol 2008; 377: 523–527.

    Article  CAS  PubMed  Google Scholar 

  25. Tazoe H, Otomo Y, Karaki S, Kato I, Fukami Y, Terasaki M et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res 2009; 30: 149–156.

    Article  CAS  PubMed  Google Scholar 

  26. Moran TH, Norgren R, Crosby RJ, McHugh PR . Central and peripheral vagal transport of cholecystokinin binding sites occurs in afferent fibers. Brain Res 1990; 526: 95–102.

    Article  CAS  PubMed  Google Scholar 

  27. Nefti W, Chaumontet C, Fromentin G, Tome D, Darcel N . A high-fat diet attenuates the central response to within-meal satiation signals and modifies the receptor expression of vagal afferents in mice. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1681–R1686.

    Article  CAS  PubMed  Google Scholar 

  28. Donovan MJ, Paulino G, Raybould HE . CCK(1) receptor is essential for normal meal patterning in mice fed high fat diet. Physiol Behav 2007; 92: 969–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin S, Thomas TC, Storlien LH, Huang XF . Development of high fat diet-induced obesity and leptin resistance in C57Bl/6J mice. Int J Obes Relat Metab Disord 2000; 24: 639–646.

    Article  CAS  PubMed  Google Scholar 

  30. Schwartz GJ, Whitney A, Skoglund C, Castonguay TW, Moran TH . Decreased responsiveness to dietary fat in Otsuka Long-Evans Tokushima fatty rats lacking CCK-A receptors. Am J Physiol 1999; 277: R1144–R1151.

    CAS  PubMed  Google Scholar 

  31. Covasa M, Ritter RC . Reduced CCK-induced Fos expression in the hindbrain, nodose ganglia, and enteric neurons of rats lacking CCK-1 receptors. Brain Res 2005; 1051: 155–163.

    Article  CAS  PubMed  Google Scholar 

  32. Chomczynski P, Sacchi N . The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 2006; 1: 581–585.

    Article  CAS  PubMed  Google Scholar 

  33. Covasa M, Ritter RC . Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol 1999; 277: R279–R285.

    CAS  PubMed  Google Scholar 

  34. Brenner LA, Ritter RC . Type A CCK receptors mediate satiety effects of intestinal nutrients. Pharmacol Biochem Behav 1996; 54: 625–631.

    Article  CAS  PubMed  Google Scholar 

  35. Chandler PC, Wauford PK, Oswald KD, Maldonado CR, Hagan MM . Change in CCK-8 response after diet-induced obesity and MC3/4-receptor blockade. Peptides 2004; 25: 299–306.

    Article  CAS  PubMed  Google Scholar 

  36. Ritter RC . Gastrointestinal mechanisms of satiation for food. Physiol Behav 2004; 81: 249–273.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Ma W, Wang S . Slower gastric emptying in high-fat diet induced obese rats is associated with attenuated plasma ghrelin and elevated plasma leptin and cholecystokinin concentrations. Regul Pept 2011; 171: 53–57.

    Article  CAS  PubMed  Google Scholar 

  38. Neary MT, Batterham RL . Gut hormones: implications for the treatment of obesity. Pharmacol Ther 2009; 124: 44–56.

    Article  CAS  PubMed  Google Scholar 

  39. Eissele R, Goke R, Willemer S, Harthus HP, Vermeer H, Arnold R et al. Glucagon-like peptide-1 cells in the gastrointestinal tract and pancreas of rat, pig and man. Eur J Clin Invest 1992; 22: 283–291.

    Article  CAS  PubMed  Google Scholar 

  40. Ballantyne GH . Peptide YY(1-36) and peptide YY(3-36): Part I. Distribution, release and actions. Obes Surg 2006; 16: 651–658.

    Article  PubMed  Google Scholar 

  41. Theodorakis MJ, Carlson O, Michopoulos S, Doyle ME, Juhaszova M, Petraki K et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab 2006; 290: E550–E559.

    Article  CAS  PubMed  Google Scholar 

  42. Clegg DJ, Benoit SC, Reed JA, Woods SC, Dunn-Meynell A, Levin BE . Reduced anorexic effects of insulin in obesity-prone rats fed a moderate-fat diet. Am J Physiol Regul Integr Comp Physiol 2005; 288: R981–R986.

    Article  CAS  PubMed  Google Scholar 

  43. Shang Q, Saumoy M, Holst JJ, Salen G, Xu G . Colesevelam improves insulin resistance in a diet-induced obesity (F-DIO) rat model by increasing the release of GLP-1. Am J Physiol Gastrointest Liver Physiol 2010; 298: G419–G424.

    Article  CAS  PubMed  Google Scholar 

  44. Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia 2006; 49: 1360–1370.

    Article  CAS  PubMed  Google Scholar 

  45. Williams DL, Baskin DG, Schwartz MW . Evidence that intestinal glucagon-like peptide-1 plays a physiological role in satiety. Endocrinology 2009; 150: 1680–1687.

    Article  CAS  PubMed  Google Scholar 

  46. Yox DP, Brenner L, Ritter RC . CCK-receptor antagonists attenuate suppression of sham feeding by intestinal nutrients. Am J Physiol 1992; 262: R554–R561.

    CAS  PubMed  Google Scholar 

  47. Cani PD, Dewever C, Delzenne NM . Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br J Nutr 2004; 92: 521–526.

    Article  CAS  PubMed  Google Scholar 

  48. de Krom M, van der Schouw YT, Hendriks J, Ophoff RA, van Gils CH, Stolk RP et al. Common genetic variations in CCK, leptin, and leptin receptor genes are associated with specific human eating patterns. Diabetes 2007; 56: 276–280.

    Article  CAS  PubMed  Google Scholar 

  49. Covasa M . Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2010; 299: R1423–R1439.

    Article  CAS  PubMed  Google Scholar 

  50. Paulino G, Barbier de la Serre C, Knotts TA, Oort PJ, Newman JW, Adams SH et al. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats. Am J Physiol Endocrinol Metab 2009; 296: E898–E903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Broberger C, Holmberg K, Shi TJ, Dockray G, Hokfelt T . Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 2001; 903: 128–140.

    Article  CAS  PubMed  Google Scholar 

  52. Daly DM, Park SJ, Valinsky WC, Beyak MJ . Impaired intestinal afferent nerve satiety signalling and vagal afferent excitability in diet induced obesity in the mouse. J Physiol 2011; 589: 2857–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Takiguchi S, Takata Y, Funakoshi A, Miyasaka K, Kataoka K, Fujimura Y et al. Disrupted cholecystokinin type-A receptor (CCKAR) gene in OLETF rats. Gene 1997; 197: 169–175.

    Article  CAS  PubMed  Google Scholar 

  54. Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D et al. Weight-reducing effects of the plasma protein encoded by the obese gene. Science 1995; 269: 543–546.

    Article  CAS  PubMed  Google Scholar 

  55. Peters JH, Karpiel AB, Ritter RC, Simasko SM . Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin. Endocrinology 2004; 145: 3652–3657.

    Article  CAS  PubMed  Google Scholar 

  56. Matson CA, Reid DF, Cannon TA, Ritter RC . Cholecystokinin and leptin act synergistically to reduce body weight. Am J Physiol Regul Integr Comp Physiol 2000; 278: R882–R890.

    Article  CAS  PubMed  Google Scholar 

  57. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE . Diet-induced obesity leads to the development of leptin resistance in vagal afferent neurons. Am J Physiol Endocrinol Metab 2011; 301: E187–E195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Muriel Thomas, Marie-Louise Noordine and Leila Ben Yahia for their assistance with the collection of intestinal epithelial cells and Tomas de Wouters for his assistance with qRT-PCR experiments.

Authors Contributions

FAD, TDS and MC were responsible for study concept and design. FAD, TDSYS and MC were responsible for acquisition of data. FAD and TDS were responsible for statistical analysis. FAD, TDS and MC were responsible for interpretation of the data, drafting of the manuscript and critical revisions for important intellectual content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Covasa.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duca, F., Swartz, T., Sakar, Y. et al. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes 37, 375–381 (2013). https://doi.org/10.1038/ijo.2012.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.45

Keywords

This article is cited by

Search

Quick links