Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

Synphilin-1 alters metabolic homeostasis in a novel Drosophila obesity model

A Corrigendum to this article was published on 11 December 2012

Abstract

Aims:

The pathogenesis of obesity remains incompletely understood. Drosophila have conserved neuroendocrine and digestion systems with human and become an excellent system for studying energy homeostasis. Here, we reported a novel obesity Drosophila model, in which expression of human protein, synphilin-1 (SP1), in neurons fosters positive energy balance.

Subjects and methods:

To further understand the actions of SP1 in energy balance control, the upstream activation sequence UAS/GAL4 system was used to generate human SP1 transgenic Drosophila. We characterized a human SP1 transgenic Drosophila by assessing SP1 expression, fat lipid deposition, food intake and fly locomotor activity to determine the major behavioral changes and their consequences in the development of the obesity-like phenotype.

Results:

Overexpression of SP1 in neurons, but not peripheral cells, increased the body weight of flies compared with that of non-transgenic controls. SP1 increased food intake but did not affect locomotor activity. SP1 increased the levels of triacylglycerol, and the size of fat body cells and lipid droplets, indicating that SP1 increased lipid-fat disposition. Survival studies showed that SP1 transgenic flies were more resistant to food deprivation. SP1 regulated lipin gene expression that may participate in SP1-induced fat deposition and starvation resistance.

Conclusion:

These studies demonstrate that SP1 expression affects energy homeostasis in ways that enhance positive energy balance and provide a useful obesity model for future pathogenesis and therapeutic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Ribeiro CS, Carneiro K, Ross CA, Menezes JR, Engelender S . Synphilin-1 is developmentally localized to synaptic terminals, and its association with synaptic vesicles is modulated by alpha-synuclein. J Biol Chem 2002; 277: 23927–23933.

    Article  CAS  Google Scholar 

  2. Nagano Y, Yamashita H, Takahashi T, Kishida S, Nakamura T, Iseki E et al. Siah-1 facilitates ubiquitination and degradation of synphilin-1. J Biol Chem 2003; 278: 51504–51514.

    Article  CAS  Google Scholar 

  3. Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H . Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann Neurol 2000; 47: 521–523.

    Article  CAS  Google Scholar 

  4. Engelender S, Kaminsky Z, Guo X, Sharp AH, Amaravi RK, Kleiderlein JJ et al. Synphilin-1 associates with alpha-synuclein and promotes the formation of cytosolic inclusions. Nat Genet 1999; 22: 110–114.

    Article  CAS  Google Scholar 

  5. Smith WW, Margolis RL, Li X, Troncoso JC, Lee MK, Dawson VL et al. Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci 2005; 25: 5544–5552.

    Article  CAS  Google Scholar 

  6. Chung KK, Zhang Y, Lim K L, Tanaka Y, Huang H, Gao J et al. Parkin ubiquitinates the alpha-synuclein-interacting protein, synphilin-1: implications for Lewy-body formation in Parkinson disease. Nat Med 2001; 7: 1144–1150.

    Article  CAS  Google Scholar 

  7. Szargel R, Rott R, Engelender S . Synphilin-1 isoforms in Parkinson’s disease: regulation by phosphorylation and ubiquitylation. Cell Mol Life Sci 2008; 65: 80–88.

    Article  CAS  Google Scholar 

  8. O’Farrell C, Murphy DD, Petrucelli L, Singleton AB, Hussey J, Farrer M et al. Transfected synphilin-1 forms cytoplasmic inclusions in HEK293 cells. Brain Res Mol Brain Res 2001; 97: 94–102.

    Article  Google Scholar 

  9. Lee G, Tanaka M, Park K, Lee SS, Kim YM, Junn E et al. Casein kinase II-mediated phosphorylation regulates alpha-synuclein/synphilin-1 interaction and inclusion body formation. J Biol Chem 2004; 279: 6834–6839.

    Article  CAS  Google Scholar 

  10. Avraham E, Szargel R, Eyal A, Rott R, Engelender S . Glycogen synthase kinase 3beta modulates synphilin-1 ubiquitylation and cellular inclusion formation by SIAH: implications for proteasomal function and Lewy body formation. J Biol Chem 2005; 280: 42877–42886.

    Article  CAS  Google Scholar 

  11. Marx FP, Soehn AS, Berg D, Melle C, Schiesling C, Lang M et al. The proteasomal subunit S6 ATPase is a novel synphilin-1 interacting protein--implications for Parkinson’s disease. FASEB J 2007; 21: 1759–1767.

    Article  CAS  Google Scholar 

  12. Alvarez-Castelao B, Castano JG . Synphilin-1 inhibits alpha-synuclein degradation by the proteasome. Cell Mol Life Sci 2011; 15: 2643–2654.

    Article  Google Scholar 

  13. Smith WW, Liu Z, Liang Y, Masuda N, Swing DA, Jenkins NA et al. Synphilin-1 attenuates neuronal degeneration in the A53T {alpha}-synuclein transgenic mouse model. Hum Mol Genet 2010; 19: 2087–2098.

    Article  CAS  Google Scholar 

  14. Li X, Liu Z, Tamashiro K, Shi B, Rudnicki DD, Ross CA et al. Synphilin-1 exhibits trophic and protective effects against Rotenone toxicity. Neuroscience 2010; 165: 455–462.

    Article  CAS  Google Scholar 

  15. Giaime E, Sunyach C, Herrant M, Grosso S, Auberger P, McLean PJ et al. Caspase-3-derived C-terminal product of synphilin-1 displays antiapoptotic function via modulation of the p53-dependent cell death pathway. J Biol Chem 2006; 281: 11515–11522.

    Article  CAS  Google Scholar 

  16. Li X, Tamashiro KL, Liu Z, Bello NT, Wang X, Aja S et al. A novel obesity model: synphilin-1-induced hyperphagia and obesity in mice. Int J Obes (Lond) 2011. e-pub ahead of print 13 December 2011 doi:10.1038/ijo.2011.235.

    Article  Google Scholar 

  17. Baker KD, Thummel CS . Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab 2007; 6: 257–266.

    Article  CAS  Google Scholar 

  18. Leopold P, Perrimon N . Drosophila and the genetics of the internal milieu. Nature 2007; 450: 186–188.

    Article  CAS  Google Scholar 

  19. Markstein M, Pitsouli C, Villalta C, Celniker SE, Perrimon N . Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 2008; 40: 476–483.

    Article  CAS  Google Scholar 

  20. Ni JQ, Markstein M, Binari R, Pfeiffer B, Liu LP, Villalta C et al. Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 2008; 5: 49–51.

    Article  CAS  Google Scholar 

  21. Al-Anzi B, Sapin V, Waters C, Zinn K, Wyman RJ, Benzer S . Obesity-blocking neurons in Drosophila. Neuron 2009; 63: 329–341.

    Article  CAS  Google Scholar 

  22. Liu Z, Wang X, Yu Y, Li X, Wang T, Jiang H et al. A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA 2008; 105: 2693–2698.

    Article  CAS  Google Scholar 

  23. Zhang H, Liu J, Li CR, Momen B, Kohanski RA, Pick L . Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc Natl Acad Sci USA 2009; 106: 19617–19622.

    Article  CAS  Google Scholar 

  24. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, Liong JC et al. Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci USA 2007; 104: 8253–8256.

    Article  CAS  Google Scholar 

  25. Brand AH, Perrimon N . Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 1993; 118: 401–415.

    CAS  Google Scholar 

  26. Li T, Yang D, Sushchky S, Liu Z, Smith WW . Models for LRRK2-linked Parkinsonism. Parkinsons Dis 2011; 2011: 942412.

    PubMed  PubMed Central  Google Scholar 

  27. Markow TA . Perspective: female remating, operational sex ratio, and the arena of sexual selection in Drosophila species. Evolution 2002; 56: 1725–1734.

    Article  Google Scholar 

  28. DiAngelo JR, Birnbaum MJ . Regulation of fat cell mass by insulin in Drosophila melanogaster. Mol Cell Biol 2009; 29: 6341–6352.

    Article  CAS  Google Scholar 

  29. Csaki LS, Reue K . Lipins: multifunctional lipid metabolism proteins. Annu Rev Nutr 2010; 30: 257–272.

    Article  CAS  Google Scholar 

  30. Harris TE, Finck BN . Dual function lipin proteins and glycerolipid metabolism. Trends Endocrinol Metab 2011; 22: 226–233.

    Article  CAS  Google Scholar 

  31. Reue K . The lipin family: mutations and metabolism. Curr Opin Lipidol 2009; 20: 165–170.

    Article  CAS  Google Scholar 

  32. Ugrankar R, Liu Y, Provaznik J, Schmitt S, Lehmann M . Lipin is a central regulator of adipose tissue development and function in Drosophila melanogaster. Mol Cell Biol 2011; 31: 1646–1656.

    Article  CAS  Google Scholar 

  33. Goodman JM . Demonstrated and inferred metabolism associated with cytosolic lipid droplets. J Lipid Res 2009; 50: 2148–2156.

    Article  CAS  Google Scholar 

  34. Beller M, Thiel K, Thul PJ, Jackle H . Lipid droplets: a dynamic organelle moves into focus. FEBS Lett 2010; 584: 2176–2182.

    Article  CAS  Google Scholar 

  35. Harbison ST, Chang S, Kamdar KP, Mackay TF . Quantitative genomics of starvation stress resistance in Drosophila. Genome Biol 2005; 6: R36.

    Article  Google Scholar 

  36. Reue K, Brindley DN . Thematic review series: glycerolipids. multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J Lipid Res 2008; 49: 2493–2503.

    Article  CAS  Google Scholar 

  37. Finck BN, Gropler MC, Chen Z, Leone TC, Croce MA, Harris TE et al. Lipin 1 is an inducible amplifier of the hepatic PGC-1alpha/PPARalpha regulatory pathway. Cell Metab 2006; 4: 199–210.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Craig Montell for helpful discussion. We also thank Drs Bader Al-Anzi and Dr Youngseok Lee for kindly providing us the GAL4 driver flies. This work was supported by the National Institutes of Health, Grants: DK083410 to WWS, and the Paul R McHugh Chair for Motivated Behavior to THM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W W Smith.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Li, T., Yang, D. et al. Synphilin-1 alters metabolic homeostasis in a novel Drosophila obesity model. Int J Obes 36, 1529–1536 (2012). https://doi.org/10.1038/ijo.2012.111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2012.111

Keywords

This article is cited by

Search

Quick links