Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Combined amylin–leptin treatment lowers blood pressure and adiposity in lean and obese rats

Abstract

Objective:

To examine the cardiovascular effects of combined amylin (AMN) and leptin (LEP) treatment in lean and obese rats.

Research design:

Rats were instrumented for telemetry and given LEP (300 μg kg–1 day–1), AMN (100 μg kg–1 day–1), AMN+LEP or vehicle (VEH; 0.9% normal saline) via a subcutaneous mini-osmotic pump for 7 days. The VEH group was subdivided into ad libitum fed and pair-fed to the amount of food AMN+LEP animals ate daily. Rats were housed in metabolic chambers for analysis of cardiovascular physiology and metabolism.

Subjects:

Male Fisher 344 × Brown Norway (FBNF1; Harlan; age=3–5 months; n=72) rats were placed on standard rodent chow (LEAN, n=41) or moderately high-fat diet (OBESE; n=31) to produce obesity.

Results:

AMN+LEP potently reduced food intake (LEAN: 57% OBESE: 59%) and abdominal fat mass (LEAN: 56% OBESE: 41%). Pair-fed rats displayed bradycardia and metabolic suppression. In contrast, AMN+LEP increased heart rate and oxygen consumption above levels in LEP or AMN-treated rats. LEP reduced blood pressure in both lean and obese rats but AMN had no effect. LEP-induced reductions in blood pressure were not altered by AMN+LEP treatment. Thus, AMN+LEP treatment decreased food intake, body fat and blood pressure in lean and obese rats.

Conclusion:

We conclude that the potent anti-adiposity actions of AMN+LEP are due in part to prevention of the bradycardia and metabolic suppression typically observed with negative energy balance. Furthermore, the hypotensive actions of peripheral LEP treatment are observable in spite of the potent AMN+LEP activation of anorexic and thermogenic mechanisms in the central nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM . Antiobesity effects of the beta cell hormone amylin in diet-induced obese rats: effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 2006; 147: 5855–5864.

    Article  CAS  Google Scholar 

  2. Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci USA 2008; 105: 7257–7262.

    Article  CAS  Google Scholar 

  3. Trevaskis JL, Coffey T, Cole R, Lei C, Wittmer C, Walsh B et al. Amylin-mediated restoration of leptin responsiveness in diet-induced obesity: magnitude and mechanisms. Endocrinology 2008; 149: 5679–5687.

    Article  CAS  Google Scholar 

  4. Chan JLRJ, Weyer C . It takes two to tango: combined amylin/leptin agonism as a potential approach to obesity drug development. J Investig Med 2009; 57: 777–783.

    Article  CAS  Google Scholar 

  5. Trevaskis JL, Parkes DG, Roth JD . Insights into amylin-leptin synergy. Trends Endocrinol Metabol 2010; 21: 473–479.

    Article  CAS  Google Scholar 

  6. Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG . Central nervous system control of food intake. Nature 2000; 404: 661.

    Article  CAS  Google Scholar 

  7. Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 2010; 285: 17271–17276.

    Article  CAS  Google Scholar 

  8. Greenfield JR MJ, Keogh JM, Henning E, Satterwhite JH, Cameron GS, Astruc B et al. Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 2009; 360: 44–52.

    Article  Google Scholar 

  9. Mark AL . Cardiovascular side effects of antiobesity drugs: a yellow flag in the race to safe pharmacotherapy for obesity. Circulation 2009; 120: 719–721.

    Article  Google Scholar 

  10. Rahmouni K, Haynes WG, Morgan DA, Mark AL . Intracellular mechanisms involved in leptin regulation of sympathetic outflow. Hypertension 2003; 41 (3 Part 2): 763–767.

    Article  CAS  Google Scholar 

  11. Rahmouni K, Morgan DA . Hypothalamic arcuate nucleus mediates the sympathetic and arterial pressure responses to leptin. Hypertension 2007; 49: 647–652.

    Article  CAS  Google Scholar 

  12. Knight WD, Seth R, Boron J, Overton JM . Short-term physiological hyperleptinemia decreases arterial blood pressure. Regul Pept 2009; 154 (1–3): 60–68.

    Article  CAS  Google Scholar 

  13. Belin de Chantemele EJ, Muta K, Mintz J, Tremblay ML, Marrero MB, Fulton DJ et al. Protein tyrosine phosphatase 1B, a major regulator of leptin-mediated control of cardiovascular function. Circulation 2009; 120: 753–763.

    Article  CAS  Google Scholar 

  14. Correia MLG, Morgan DA, Sivitz WI, Mark AL, Haynes WG . Leptin acts in the central nervous system to produce dose-dependent changes in arterial pressure. Hypertension 2001; 37: 936–942.

    Article  CAS  Google Scholar 

  15. Overton JM, Williams TD, Chambers JB, Rashotte ME . Central leptin infusion attenuates the cardiovascular and metabolic effects of fasting in rats. Hypertension 2001; 37: 663–669.

    Article  CAS  Google Scholar 

  16. Young A . Cardiovascular effects. Adv Pharmacol 2005; 52: 239–250.

    Article  CAS  Google Scholar 

  17. Aronne LJ, Halseth AE, Burns CM, Miller S, Shen LZ . Enhanced weight loss following coadministration of pramlintide with sibutramine or phentermine in a multicenter trial. Obesity 2010; 18: 1739–1746.

    Article  CAS  Google Scholar 

  18. Altun M, Bergman E, Edstrom E, Johnson H, Ulfhake B . Behavioral impairments of the aging rat. Physiol Behav 2007; 92: 911–923.

    Article  CAS  Google Scholar 

  19. Rashotte ME, Basco PS, Henderson RP . Daily cycles in body temperature, metabolic rate, and substrate utilization in pigeons: influence of amount and timing of food consumption. Physiol Behav 1995; 57: 731–746.

    Article  CAS  Google Scholar 

  20. Williams TD, Chambers JB, May OL, Henderson RP, Rashotte ME, Overton JM . Concurrent reductions in blood pressure and metabolic rate during fasting in the unrestrained SHR. Am J Physiol Regul Integr Comp Physiol 2000; 278: R255–R262.

    Article  CAS  Google Scholar 

  21. Schutz Y . Dietary fat, lipogenesis and energy balance. Physiol Behav 2004; 83: 557–564.

    Article  CAS  Google Scholar 

  22. Wang Z, O'Connor TP, Heshka S, Heymsfield SB . The reconstruction of Kleiber's law at the organ-tissue level. J Nutr 2001; 131: 2967–2970.

    Article  CAS  Google Scholar 

  23. Smil V . Laying down the law. Nature 2000; 403: 597.

    Article  CAS  Google Scholar 

  24. Feldman HA, McMahon TA . The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir Physiol 1983; 52: 149–163.

    Article  CAS  Google Scholar 

  25. Kleiber M, Rogers TA . Energy metabolism. Annu Rev Physiol 1961; 23: 5–36.

    Article  CAS  Google Scholar 

  26. Trevaskis JL, Turek VF, Griffin PS, Wittmer C, Parkes DG, Roth JD . Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin? Physiol Behav 2010; 100: 187–195.

    Article  CAS  Google Scholar 

  27. Roth JD, Hughes H, Coffey T, Maier H, Trevaskis JL, Anderson CM . Effects of prior or concurrent food restriction on amylin-induced changes in body weight and body composition in high-fat-fed female rats. Am J Physiol Endocrinol Metab 2007; 293: E1112–E1117.

    Article  CAS  Google Scholar 

  28. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS . Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1995; 1: 1311–1314.

    Article  CAS  Google Scholar 

  29. Jequier E . Leptin signaling, adiposity, and energy balance. Ann NY Acad Sci 2002; 967: 379–388.

    Article  CAS  Google Scholar 

  30. Halaas JL, Boozer C, Blair-West J, Fidahusein N, Denton DA, Friedman JM . Physiological response to long-term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 1997; 94: 8878–8883.

    Article  CAS  Google Scholar 

  31. Banks WA, Farr SA, Morley JE . The effects of high fat diets on the blood-brain barrier transport of leptin: failure or adaptation? Physiol Behav 2006; 88: 244–248.

    Article  CAS  Google Scholar 

  32. Munzberg H, Bjornholm M, Bates SH, Myers Jr MG . Leptin receptor action and mechanisms of leptin resistance. Cell Mol Life Sci 2005; 62: 642–652.

    Article  CAS  Google Scholar 

  33. Scarpace PJ, Matheny M, Tumer N . Hypothalamic leptin resistance is associated with impaired leptin signal transduction in aged obese rats. Neuroscience 2001; 104: 1111–1117.

    Article  CAS  Google Scholar 

  34. Turek VF, Trevaskis JL, Levin BE, Dunn-Meynell AA, Irani B, Gu G et al. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 2010; 151: 143–152.

    Article  CAS  Google Scholar 

  35. Barth SW, Riediger T, Lutz TA, Rechkemmer G . Differential effects of amylin and salmon calcitonin on neuropeptide gene expression in the lateral hypothalamic area and the arcuate nucleus of the rat. Neurosci Lett 2003; 341: 131–134.

    Article  CAS  Google Scholar 

  36. Lutz TA . Pancreatic amylin as a centrally acting satiating hormone. Curr Drug Targets 2005; 6: 181–189.

    Article  CAS  Google Scholar 

  37. Mollet A, Meier S, Riediger T, Lutz TA . Histamine H1 receptors in the ventromedial hypothalamus mediate the anorectic action of the pancreatic hormone amylin. Peptides 2003; 24: 155–158.

    Article  CAS  Google Scholar 

  38. Bjorbaek C, El-Haschimi K, Frantz JD, Flier JS . The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999; 274: 30059–30065.

    Article  CAS  Google Scholar 

  39. Peralta S, Carrascosa JM, Gallardo N, Ros M, Arribas C . Ageing increases SOCS-3 expression in rat hypothalamus: effects of food restriction. Biochem Biophy Res Commun 2002; 296: 425.

    Article  CAS  Google Scholar 

  40. Sahu A, Nguyen L, O'Doherty RM . Nutritional regulation of hypothalamic leptin receptor gene expression is defective in diet-induced obesity. J Neuroendocrinol 2002; 14: 887–893.

    Article  CAS  Google Scholar 

  41. Rosenbaum M, Goldsmith R, Bloomfield D, Magnano A, Weimer L, Heymsfield S et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J Clin Invest 2005; 115: 3579–3586.

    Article  CAS  Google Scholar 

  42. Kuo JJ, Jones OB, Hall JE . Inhibition of NO synthesis enhances chronic cardiovascular and renal actions of leptin. Hypertension 2001; 37 (2 Part 2): 670–676.

    Article  CAS  Google Scholar 

  43. Tallam LS, da Silva AA, Hall JE . Melanocortin-4 receptor mediates chronic cardiovascular and metabolic actions of leptin. Hypertension 2006; 48: 58–64.

    Article  CAS  Google Scholar 

  44. Beltowski J, Wojcicka G, Jamroz-Wisniewska A, Borkowska E . Role of PI3K and PKB/Akt in acute natriuretic and NO-mimetic effects of leptin. Regul Pept 2007; 140: 168–177.

    Article  CAS  Google Scholar 

  45. Rodriguez A, Fortuno A, Gomez-Ambrosi J, Zalba G, Diez J, Fruhbeck G . The inhibitory effect of leptin on angiotensin II-induced vasoconstriction in vascular smooth muscle cells is mediated via a nitric oxide-dependent mechanism. Endocrinology 2007; 148: 324–331.

    Article  CAS  Google Scholar 

  46. Carlyle M, Jones OB, Kuo JJ, Hall JE . Chronic cardiovascular and renal actions of leptin: role of adrenergic activity. Hypertension 2002; 39 (2 Part 2): 496–501.

    Article  CAS  Google Scholar 

  47. da Silva AA, Kuo JJ, Hall JE . Role of hypothalamic melanocortin 3/4-receptors in mediating chronic cardiovascular, renal, and metabolic actions of leptin. Hypertension 2004; 43: 1312–1317.

    Article  CAS  Google Scholar 

  48. Wolk R, Somers VK . Leptin and vascular function: friend or foe? Eur Heart J 2006; 27: 2263–2265.

    Article  CAS  Google Scholar 

  49. Vecchione C, Maffei A, Colella S, Aretini A, Poulet R, Frati G et al. Leptin effect on endothelial nitric oxide is mediated through Akt-endothelial nitric oxide synthase phosphorylation pathway. Diabetes 2002; 51: 168–173.

    Article  CAS  Google Scholar 

  50. Gardiner SM, Compton AM, Bennett T . Regional hemodynamic effects of calcitonin gene-related peptide. Am J Physiol 1989; 256 (2 Part 2): R332–R338.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding support from Department of Biomedical Science, Florida State University. We thank Dr M Freeman, C Fitch-Pye, M M Messina, E Bascom, E Stern, M Gierach and D Kopa for their contributions to the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J M Overton.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seth, R., Knight, W. & Overton, J. Combined amylin–leptin treatment lowers blood pressure and adiposity in lean and obese rats. Int J Obes 35, 1183–1192 (2011). https://doi.org/10.1038/ijo.2010.262

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.262

Keywords

This article is cited by

Search

Quick links