Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Roux-en-Y gastric bypass surgery changes food reward in rats

Abstract

Context:

Roux-en-Y gastric bypass surgery (RYGB) is currently the most effective treatment for morbid obesity, and clinical studies suggest that RYGB patients change food preferences and the desire to eat.

Objective:

To examine hedonic reactions to palatable foods and food choice behavior in an established rat model of RYGB.

Methods and Design:

Male Sprague–Dawley (SD) rats and selected line obesity-prone rats that were rendered obese on a high-fat diet underwent RYGB or sham surgery and were tested for ‘liking’ and ‘wanting’ of palatable foods at different caloric densities 4–6 months after surgery.

Results:

Compared with sham-operated (obese) and age-matched lean control rats, RYGB rats of both models exhibited more positive orofacial responses to low concentrations of sucrose but fewer to high concentrations. These changes in ‘liking’ by RYGB rats were translated into a shift of the concentration–response curve in the brief access test, with more vigorous licking of low concentrations of sucrose and corn oil, but less licking of the highest concentrations. The changes in hedonic evaluation also resulted in lower long-term preference/acceptance of high-fat diets compared with sham-operated (obese) rats. Furthermore, the reduced ‘wanting’ of a palatable reward in the incentive runway seen in sham-operated obese SD rats was fully restored after RYGB to the level found in lean control rats.

Conclusions:

The results suggest that RYGB leads to a shift in hedonic evaluation, favoring low over high calorie foods and restores obesity-induced alterations in ‘liking’ and ‘wanting’. It remains to be determined whether these effects are simply due to weight loss or specific changes in gut–brain communication. Given the emerging evidence for modulation of cortico-limbic brain structures involved in reward mechanisms by gut hormones, RYGB-induced changes in the secretion of these hormones could potentially be mediating these effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Schauer PR, Burguera B, Ikramuddin S, Cottam D, Gourash W, Hamad G et al. Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Ann Surg 2003; 238: 467–484; discussion 484–485.

    PubMed  PubMed Central  Google Scholar 

  2. Rubino F . Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. Diabetes Care 2008; 31 (Suppl 2): S290–S296.

    Article  PubMed  Google Scholar 

  3. Sjostrom L, Narbro K, Sjostrom CD, Karason K, Larsson B, Wedel H et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 2007; 357: 741–752.

    Article  PubMed  Google Scholar 

  4. Mechanick JI, Kushner RF, Sugerman HJ, Gonzalez-Campoy JM, Collazo-Clavell ML, Guven S et al. Executive summary of the recommendations of the American Association of Clinical Endocrinologists, the Obesity Society, and American Society for Metabolic & Bariatric Surgery medical guidelines for clinical practice for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient. Endocr Pract 2008; 14: 318–336.

    Article  PubMed  Google Scholar 

  5. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM et al. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg 1995; 222: 339–350; discussion 350–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sjostrom L, Lindroos AK, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al. Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. N Engl J Med 2004; 351: 2683–2693.

    Article  PubMed  Google Scholar 

  7. Cummings DE, Overduin J, Foster-Schubert KE . Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endocrinol Metab 2004; 89: 2608–2615.

    Article  CAS  PubMed  Google Scholar 

  8. Korner J, Inabnet W, Febres G, Conwell IM, McMahon DJ, Salas R et al. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux-en-Y gastric bypass. Int J Obes (Lond) 2009; 33: 786–795.

    Article  CAS  Google Scholar 

  9. Stylopoulos N, Davis P, Pettit JD, Rattner DW, Kaplan LM . Changes in serum ghrelin predict weight loss after Roux-en-Y gastric bypass in rats. Surg Endosc 2005; 19: 942–946.

    Article  CAS  PubMed  Google Scholar 

  10. Laferrere B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care 2007; 30: 1709–1716.

    Article  CAS  PubMed  Google Scholar 

  11. Meirelles K, Ahmed T, Culnan DM, Lynch CJ, Lang CH, Cooney RN . Mechanisms of glucose homeostasis after Roux-en-Y gastric bypass surgery in the obese, insulin-resistant Zucker rat. Ann Surg 2009; 249: 277–285.

    Article  PubMed  Google Scholar 

  12. le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 2006; 147: 3–8.

    Article  CAS  PubMed  Google Scholar 

  13. Troy S, Soty M, Ribeiro L, Laval L, Migrenne S, Fioramonti X et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab 2008; 8: 201–211.

    Article  CAS  PubMed  Google Scholar 

  14. Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L . Changes in patients’ taste acuity after Roux-en-Y gastric bypass for clinically severe obesity. J Am Diet Assoc 1995; 95: 666–670.

    Article  CAS  PubMed  Google Scholar 

  15. Scruggs DM, Buffington C, Cowan Jr GS . Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg 1994; 4: 24–28.

    Article  CAS  PubMed  Google Scholar 

  16. Naslund E, Melin I, Gryback P, Hagg A, Hellstrom PM, Jacobsson H et al. Reduced food intake after jejunoileal bypass: a possible association with prolonged gastric emptying and altered gut hormone patterns. Am J Clin Nutr 1997; 66: 26–32.

    Article  CAS  PubMed  Google Scholar 

  17. Thirlby RC, Bahiraei F, Randall J, Drewnoski A . Effect of Roux-en-Y gastric bypass on satiety and food likes: the role of genetics. J Gastrointest Surg 2006; 10: 270–277.

    Article  PubMed  Google Scholar 

  18. Olbers T, Bjorkman S, Lindroos A, Maleckas A, Lonn L, Sjostrom L et al. Body composition, dietary intake, and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg 2006; 244: 715–722.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zheng H, Shin AC, Lenard NR, Townsend RL, Patterson LM, Sigalet DL et al. Meal patterns, satiety, and food choice in a rat model of Roux-en-Y gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1273–R1282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Grill HJ, Norgren R . The taste reactivity test. I. Mimetic responses to gustatory stimuli in neurologically normal rats. Brain Res 1978; 143: 263–279.

    Article  CAS  PubMed  Google Scholar 

  21. Pecina S, Cagniard B, Berridge KC, Aldridge JW, Zhuang X . Hyperdopaminergic mutant mice have higher ‘wanting’ but not ‘liking’ for sweet rewards. J Neurosci 2003; 23: 9395–9402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kunnecke B, Verry P, Benardeau A, von Kienlin M . Quantitative body composition analysis in awake mice and rats by magnetic resonance relaxometry. Obes Res 2004; 12: 1604–1615.

    Article  PubMed  Google Scholar 

  23. Berridge KC . Measuring hedonic impact in animals and infants: microstructure of affective taste reactivity patterns. Neurosci Biobehav Rev 2000; 24: 173–198.

    Article  CAS  PubMed  Google Scholar 

  24. Ettenberg A . The runway model of drug self-administration. Pharmacol Biochem Behav 2009; 91: 271–277.

    Article  CAS  PubMed  Google Scholar 

  25. Spector AC, Redman R, Garcea M . The consequences of gustatory nerve transection on taste-guided licking of sucrose and maltose in the rat. Behav Neurosci 1996; 110: 1096–1109.

    Article  CAS  PubMed  Google Scholar 

  26. Hajnal A, Norgren R, Kovacs P . Parabrachial coding of sapid sucrose: relevance to reward and obesity. Ann NY Acad Sci 2009; 1170: 347–364.

    Article  CAS  PubMed  Google Scholar 

  27. Burgdorf J, Panksepp J . The neurobiology of positive emotions. Neurosci Biobehav Rev 2006; 30: 173–187.

    Article  PubMed  Google Scholar 

  28. Berridge KC, Kringelbach ML . Affective neuroscience of pleasure: reward in humans and animals. Psychopharmacology (Berl) 2008; 199: 457–480.

    Article  CAS  Google Scholar 

  29. Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ . Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R Soc Lond B Biol Sci 2006; 361: 1137–1148.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosenbaum M, Sy M, Pavlovich K, Leibel RL, Hirsch J . Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest 2008; 118: 2583–2591.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Berridge KC . Modulation of taste affect by hunger, caloric satiety, and sensory-specific satiety in the rat. Appetite 1991; 16: 103–120.

    Article  CAS  PubMed  Google Scholar 

  32. Goldstone AP, de Hernandez CG, Beaver JD, Muhammed K, Croese C, Bell G et al. Fasting biases brain reward systems towards high-calorie foods. Eur J Neurosci 2009; 30: 1625–1635.

    Article  PubMed  Google Scholar 

  33. Pecina S, Berridge KC . Hedonic hot spot in nucleus accumbens shell: where do mu-opioids cause increased hedonic impact of sweetness? J Neurosci 2005; 25: 11777–11786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. McFarland K, Ettenberg A . Haloperidol does not affect motivational processes in an operant runway model of food-seeking behavior. Behav Neurosci 1998; 112: 630–635.

    Article  CAS  PubMed  Google Scholar 

  35. Foreyt JP, Poston II WS . The challenge of diet, exercise and lifestyle modification in the management of the obese diabetic patient. Int J Obes Relat Metab Disord 1999; 23 (Suppl 7): S5–S11.

    Article  PubMed  Google Scholar 

  36. Pontiroli AE, Fossati A, Vedani P, Fiorilli M, Folli F, Paganelli M et al. Post-surgery adherence to scheduled visits and compliance, more than personality disorders, predict outcome of bariatric restrictive surgery in morbidly obese patients. Obes Surg 2007; 17: 1492–1497.

    Article  PubMed  Google Scholar 

  37. Gault VA, Porter WD, Flatt PR, Holscher C . Actions of exendin-4 therapy on cognitive function and hippocampal synaptic plasticity in mice fed a high-fat diet. Int J Obes (Lond) 2010; 34: 1341–1346.

    Article  CAS  Google Scholar 

  38. Nilsson LG, Nilsson E . Overweight and cognition. Scand J Psychol 2009; 50: 660–667.

    Article  PubMed  Google Scholar 

  39. During MJ, Cao L, Zuzga DS, Francis JS, Fitzsimons HL, Jiao X et al. Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nat Med 2003; 9: 1173–1179.

    Article  CAS  PubMed  Google Scholar 

  40. Shin AC, Zheng H, Townsend RL, Sigalet DL, Berthoud HR . Meal-induced hormone responses in a rat model of Roux-en-Y gastric bypass surgery. Endocrinology 2010; 151: 1588–1597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ . Exaggerated glucagon-like peptide-1 and blunted glucose-dependent insulinotropic peptide secretion are associated with Roux-en-Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 2007; 3: 597–601.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hallschmid M, Schultes B . Central nervous insulin resistance: a promising target in the treatment of metabolic and cognitive disorders? Diabetologia 2009; 52: 2264–2269.

    Article  CAS  PubMed  Google Scholar 

  43. Davis JF, Tracy AL, Schurdak JD, Tschop MH, Lipton JW, Clegg DJ et al. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat. Behav Neurosci 2008; 122: 1257–1263.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Huang XF, Yu Y, Zavitsanou K, Han M, Storlien L . Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity. Brain Res Mol Brain Res 2005; 135: 150–161.

    Article  CAS  PubMed  Google Scholar 

  45. Geiger BM, Behr GG, Frank LE, Caldera-Siu AD, Beinfeld MC, Kokkotou EG et al. Evidence for defective mesolimbic dopamine exocytosis in obesity-prone rats. FASEB J 2008; 22: 2740–2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Geiger BM, Haburcak M, Avena NM, Moyer MC, Hoebel BG, Pothos EN . Deficits of mesolimbic dopamine neurotransmission in rat dietary obesity. Neuroscience 2009; 159: 1193–1199.

    Article  CAS  PubMed  Google Scholar 

  47. Hajnal A, Acharya NK, Grigson PS, Covasa M, Twining RC . Obese OLETF rats exhibit increased operant performance for palatable sucrose solutions and differential sensitivity to D2 receptor antagonism. Am J Physiol Regul Integr Comp Physiol 2007; 293: R1846–R1854.

    Article  CAS  PubMed  Google Scholar 

  48. Fulton S, Pissios P, Manchon RP, Stiles L, Frank L, Pothos EN et al. Leptin regulation of the mesoaccumbens dopamine pathway. Neuron 2006; 51: 811–822.

    Article  CAS  PubMed  Google Scholar 

  49. Thanos PK, Ramalhete RC, Michaelides M, Piyis YK, Wang GJ, Volkow ND . Leptin receptor deficiency is associated with upregulation of cannabinoid 1 receptors in limbic brain regions. Synapse 2008; 62: 637–642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C et al. Reward sensitivity and the D2 dopamine receptor gene: a case-control study of binge eating disorder. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 620–628.

    Article  CAS  PubMed  Google Scholar 

  51. Davis CA, Levitan RD, Reid C, Carter JC, Kaplan AS, Patte KA et al. Dopamine for ‘wanting’ and opioids for ‘liking’: a comparison of obese adults with and without binge eating. Obesity (Silver Spring) 2009; 17: 1220–1225.

    CAS  Google Scholar 

  52. Stice E, Spoor S, Bohon C, Small DM . Relation between obesity and blunted striatal response to food is moderated by TaqIA A1 allele. Science 2008; 322: 449–452.

    Article  CAS  PubMed  Google Scholar 

  53. Stice E, Spoor S, Ng J, Zald DH . Relation of obesity to consummatory and anticipatory food reward. Physiol Behav 2009; 97: 551–560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang GJ, Volkow ND, Logan J, Pappas NR, Wong CT, Zhu W et al. Brain dopamine and obesity. Lancet 2001; 357: 354–357.

    Article  CAS  PubMed  Google Scholar 

  55. Volkow ND, Wang GJ, Fowler JS, Telang F . Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans R Soc Lond B Biol Sci 2008; 363: 3191–3200.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wise RA . Forebrain substrates of reward and motivation. J Comp Neurol 2005; 493: 115–121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Berridge KC . The debate over dopamine's role in reward: the case for incentive salience. Psychopharmacology (Berl) 2007; 191: 391–431.

    Article  CAS  Google Scholar 

  58. Blum K, Chen AL, Chen TJ, Braverman ER, Reinking J, Blum SH et al. Activation instead of blocking mesolimbic dopaminergic reward circuitry is a preferred modality in the long term treatment of reward deficiency syndrome (RDS): a commentary. Theor Biol Med Model 2008; 5: 24.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Blum K, Chen TJ, Meshkin B, Downs BW, Gordon CA, Blum S et al. Reward deficiency syndrome in obesity: a preliminary cross-sectional trial with a Genotrim variant. Adv Ther 2006; 23: 1040–1051.

    Article  PubMed  Google Scholar 

  60. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H et al. Alterations of central dopamine receptors before and after gastric bypass surgery. Obes Surg 2010; 20: 369–374.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Leigh Townsend for technical help and Laurel Patterson for help with the manuscript. This work was supported by National Institutes of Health Grants DK047348 and DK 071082 (H-RB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-R Berthoud.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, A., Zheng, H., Pistell, P. et al. Roux-en-Y gastric bypass surgery changes food reward in rats. Int J Obes 35, 642–651 (2011). https://doi.org/10.1038/ijo.2010.174

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2010.174

Keywords

This article is cited by

Search

Quick links