Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article - Enabling Technologies
  • Published:

Original Article – Enabling Technologies

Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord

Subjects

Abstract

Lentiviral vectors have proved an effective method to deliver transgenes into the brain; however, they are often hampered by a lack of spread from the site of injection. Modifying the viral envelope with a portion of a rabies envelope glycoprotein can enhance spread in the brain by using long-range axon projections to facilitate retrograde transport. In this study, we generated two chimeric envelopes containing the extra-virion and transmembrane domain of rabies SADB19 or CVS-N2c with the intra-virion domain of vesicular stomatitis virus. Viral particles were packaged containing a green fluorescent protein reporter construct under the control of the phosphoglycerokinase promoter. Both vectors produced high-titer particles with successful integration of the glycoproteins into the particle envelope and significant transduction of neurons in vitro. Injection of the SADB19 chimeric viral vector into the lumbar spinal cord of adult mice mediated a strong preference for gene transfer to local neurons and axonal terminals, with retrograde transport to neurons in the brainstem, hypothalamus and cerebral cortex. Development of this vector provides a useful means to reliably target select populations of neurons by retrograde targeting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Finkelshtein D, Werman A, Novick D, Barak S, Rubinstein M . LDL receptor and its family members serve as the cellular receptors for vesicular stomatitis virus. Proc Natl Acad Sci USA 2013; 110: 7306–7311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Desmaris N, Bosch A, Salaun C, Petit C, Prevost MC, Tordo N et al. Production and neurotropism of lentivirus vectors pseudotyped with lyssavirus envelope glycoproteins. Mol Ther 2001; 4: 149–156.

    Article  CAS  PubMed  Google Scholar 

  4. Linterman KS, Palmer DN, Kay GW, Barry LA, Mitchell NL, McFarlane RG et al. Lentiviral-mediated gene transfer to the sheep brain: implications for gene therapy in Batten disease. Hum Gene Ther 2011; 22: 1011–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Albertini AA, Merigoux C, Libersou S, Madiona K, Bressanelli S, Roche S et al. Characterization of monomeric intermediates during VSV glycoprotein structural transition. PLoS Pathog 2012; 8: e1002556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM . New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011; 71: 617–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mazarakis ND, Azzouz M, Rohll JB, Ellard FM, Wilkes FJ, Olsen AL et al. Rabies virus glycoprotein pseudotyping of lentiviral vectors enables retrograde axonal transport and access to the nervous system after peripheral delivery. Hum Mol Genet 2001; 10: 2109–2121.

    Article  CAS  PubMed  Google Scholar 

  8. Kato S, Kuramochi M, Takasumi K, Kobayashi K, Inoue K, Takahara D et al. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. Hum Gene Ther 2011; 22: 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  9. Kato S, Kobayashi K, Inoue K, Kuramochi M, Okada T, Yaginuma H et al. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. Hum Gene Ther 2011; 22: 197–206.

    Article  CAS  PubMed  Google Scholar 

  10. Kato S, Kobayashi K, Kobayashi K . Improved transduction efficiency of a lentiviral vector for neuron-specific retrograde gene transfer by optimizing the junction of fusion envelope glycoprotein. J Neurosci Methods 2014; 227: 151–158.

    Article  CAS  PubMed  Google Scholar 

  11. Carpentier DC, Vevis K, Trabalza A, Georgiadis C, Ellison SM, Asfahani RI et al. Enhanced pseudotyping efficiency of HIV-1 lentiviral vectors by a rabies/vesicular stomatitis virus chimeric envelope glycoprotein. Gene Ther 2012; 19: 761–774.

    Article  CAS  PubMed  Google Scholar 

  12. Paxinos G, Franklin KBJ . The Mouse Brain in Stereotaxic Coordinates. Academic Press: London, 2001.

    Google Scholar 

  13. Hirano M, Kato S, Kobayashi K, Okada T, Yaginuma H, Kobayashi K . Highly efficient retrograde gene transfer into motor neurons by a lentiviral vector pseudotyped with fusion glycoprotein. PLoS One 2013; 8: e75896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Earl LA, Lifson JD, Subramaniam S . Catching HIV 'in the act' with 3D electron microscopy. Trends Microbiol 2013; 21: 397–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Libersou S, Albertini AA, Ouldali M, Maury V, Maheu C, Raux H et al. Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion. J Cell Biol 2010; 191: 199–210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ge P, Tsao J, Schein S, Green TJ, Luo M, Zhou ZH . Cryo-EM model of the bullet-shaped vesicular stomatitis virus. Science 2010; 327: 689–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Guichard P, Krell T, Chevalier M, Vaysse C, Adam O, Ronzon F et al. Three dimensional morphology of rabies virus studied by cryo-electron tomography. J Struct Biol 2011; 176: 32–40.

    Article  CAS  PubMed  Google Scholar 

  18. Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW . Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods 2004; 122: 131–139.

    Article  CAS  PubMed  Google Scholar 

  19. Transfiguracion J, Jaalouk DE, Ghani K, Galipeau J, Kamen A . Size-exclusion chromatography purification of high-titer vesicular stomatitis virus G glycoprotein-pseudotyped retrovectors for cell and gene therapy applications. Hum Gene Ther 2003; 14: 1139–1153.

    Article  CAS  PubMed  Google Scholar 

  20. Liang H, Paxinos G, Watson C . Projections from the brain to the spinal cord in the mouse. Brain Struct Funct 2011; 215: 159–186.

    Article  PubMed  Google Scholar 

  21. Matsushita M . Projections from the lowest lumbar and sacral-caudal segments to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 1999; 404: 21–32.

    Article  CAS  PubMed  Google Scholar 

  22. Lafon M . Rabies virus receptors. J Neurovirol 2005; 11: 82–87.

    Article  CAS  PubMed  Google Scholar 

  23. Kinoshita M, Matsui R, Kato S, Hasegawa T, Kasahara H, Isa K et al. Genetic dissection of the circuit for hand dexterity in primates. Nature 2012; 487: 235–238.

    Article  CAS  PubMed  Google Scholar 

  24. Oswald MJ, Tantirigama ML, Sonntag I, Hughes SM, Empson RM . Diversity of layer 5 projection neurons in the mouse motor cortex. Front Cell Neurosci 2013; 7: 174.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Tantirigama ML, Oswald MJ, Duynstee C, Hughes SM, Empson RM . Expression of the developmental transcription factor Fezf2 identifies a distinct subpopulation of layer 5 intratelencephalic-projection neurons in mature mouse motor cortex. J Neurosci 2014; 34: 4303–4308.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mentis GZ, Gravell M, Hamilton R, Shneider NA, O'Donovan MJ, Schubert M . Transduction of motor neurons and muscle fibers by intramuscular injection of HIV-1-based vectors pseudotyped with select rabies virus glycoproteins. J Neurosci Methods 2006; 157: 208–217.

    Article  CAS  PubMed  Google Scholar 

  27. Brewer GJ, Torricelli JR . Isolation and culture of adult neurons and neurospheres. Nat Protoc 2007; 2: 1490–1498.

    Article  CAS  PubMed  Google Scholar 

  28. Mastronarde DN . Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 2005; 152: 36–51.

    Article  PubMed  Google Scholar 

  29. Kremer JR, Mastronarde DN, McIntosh JR . Computer visualization of three-dimensional image data using IMOD. J Struct Biol 1996; 116: 71–76.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank John Schofield, University of Otago for assistance in developing spinal cord surgeries and Louise Parr-Brownlie and Colin Brown for helpful discussions on the anatomical localization of transduced cells. This study was supported by a grant from the Royal Society of New Zealand Marsden Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S M Hughes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoderboeck, L., Riad, S., Bokor, A. et al. Chimeric rabies SADB19-VSVg-pseudotyped lentiviral vectors mediate long-range retrograde transduction from the mouse spinal cord. Gene Ther 22, 357–364 (2015). https://doi.org/10.1038/gt.2015.3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2015.3

This article is cited by

Search

Quick links