Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AdLTR2EF1α-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine

Subjects

Abstract

Patients frequently experience a loss of salivary function following irradiation (IR) for the treatment of an oral cavity and oropharyngeal cancer. Herein, we tested if transfer of fibroblast growth factor-2 (FGF2) cDNA could limit salivary dysfunction after fractionated IR (7.5 or 9 Gy for 5 consecutive days to one parotid gland) in the miniature pig (minipig). Parotid salivary flow rates steadily decreased by 16 weeks post-IR, whereas blood flow in the targeted parotid gland began to decrease ~3 days after beginning IR. By 2 weeks, post-IR salivary blood flow was reduced by 50%, at which point it remained stable for the remainder of the study. The single preadministration of a hybrid serotype 5 adenoviral vector encoding FGF2 (AdLTR2EF1a-FGF2) resulted in the protection of parotid microvascular endothelial cells from IR damage and significantly limited the decline of parotid salivary flow. Our results suggest that a local treatment directed at protecting salivary gland endothelial cells may be beneficial for patients undergoing IR for oral cavity and oropharyngeal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D . Global cancer statistics. CA Cancer J Clin 2011; 61: 69–90.

    Article  Google Scholar 

  2. Vissink A, Jansma J, Spijkervet FK, Burlage FR, Coppes RP . Oral sequelae of head and neck radiotherapy. Crit Rev Oral Biol Med 2003; 14: 199–212.

    Article  CAS  Google Scholar 

  3. Vissink A, Mitchell JB, Baum BJ, Limesand KH, Jensen SB, Fox PC et al. Clinical management of salivary gland hypofunction and xerostomia in head and neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 2010; 78: 983–991.

    Article  Google Scholar 

  4. Langendijk JA, Doornaert P, Verdonck-de Leeuw IM, Leemans CR, Aaronson NK, Slotman BJ . Impact of late treatment-related toxicity on quality of life among patients with head and neck cancer treated with radiotherapy. J Clin Oncol 2008; 26: 3770–3776.

    Article  Google Scholar 

  5. Ahmed M, Hansen VN, Harrington KJ, Nutting CM . Reducing the risk of xerostomia and mandibular osteoradionecrosis: the potential benefits of intensity modulated radiotherapy in advanced oral cavity carcinoma. Med Dosim 2009; 34: 217–224.

    Article  Google Scholar 

  6. Parliament MB, Scrimger RA, Anderson SG, Kurien EC, Thompson HK, Field GC et al. Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004; 58: 663–673.

    Article  Google Scholar 

  7. Nutting CM, Morden JP, Harrington KJ, Urbano TG, Bhide SA, Clark C et al. Parotid-sparing intensity modulated versus conventional radiotherapy in head and neck cancer (PARSPORT): a phase 3 multicentre randomised controlled trial. Lancet Oncol 2011; 12: 127–136.

    Article  Google Scholar 

  8. Jha N, Seikaly H, Harris J, Williams D, Liu R, McGaw T et al. Prevention of radiation induced xerostomia by surgical transfer of submandibular salivary gland into the submental space. Radiother Oncol 2003; 66: 283–289.

    Article  Google Scholar 

  9. Haddad P, Karimi M . A randomized, double-blind, placebo-controlled trial of concomitant pilocarpine with head and neck irradiation for prevention of radiation-induced xerostomia. Radiother Oncol 2002; 64: 29–32.

    Article  CAS  Google Scholar 

  10. Anné PR, Machtay M, Rosenthal DI, Brizel DM, Morrison WH, Irwin DH et al. A phase II trial of subcutaneous amifostine and radiation therapy in patients with head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 67: 445–452.

    Article  Google Scholar 

  11. Brizel DM, Wasserman TH, Henke M, Strnad V, Rudat V, Monnier A et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000; 18: 3339–3345.

    Article  CAS  Google Scholar 

  12. Wang SL, Li J, Zhu XZ, Sun K, Liu XY, Zhang YG . Sialographic characterization of the normal parotid gland of the miniature pig. Dentomaxillofac Radiol 1998; 27: 178–181.

    Article  CAS  Google Scholar 

  13. Li J, Shan Z, Ou G, Liu X, Zhang C, Baum BJ et al. Structural and functional characteristics of irradiation damage to parotid glands in the miniature pig. Int J Radiat Oncol Biol Phys 2005; 62: 1510–1516.

    Article  CAS  Google Scholar 

  14. Baum BJ, Zheng C, Cotrim AP, McCullagh L, Goldsmith CM, Brahim JS et al. Aquaporin-1 gene transfer to correct radiation-induced salivary hypofunction. Handb Exp Pharmacol 2009; 190: 403–418.

    Article  CAS  Google Scholar 

  15. Preston GM, Agre P . Isolation of the cDNA for erythrocyte integral membrane protein of 28 kilodaltons: member of an ancient channel family. Proc Natl Acad Sci USA 1991; 88: 11110–11114.

    Article  CAS  Google Scholar 

  16. Delporte C, O'Connell BC, He X, Lancaster HE, O'Connell AC, Agre P et al. Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci USA 1997; 94: 3268–3273.

    Article  CAS  Google Scholar 

  17. Shan Z, Li J, Zheng C, Liu X, Fan Z, Zhang C et al. Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 2005; 11: 444–451.

    Article  CAS  Google Scholar 

  18. Gao R, Yan X, Zheng C, Goldsmith CM, Afione S, Hai B et al. AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Therapy 2011; 18: 38–42.

    Article  Google Scholar 

  19. Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci USA 2012; 109: 19403–19407.

    Article  CAS  Google Scholar 

  20. Cotrim AP, Sowers A, Mitchell JB, Baum BJ . Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther 2007; 15: 2101–2106.

    Article  CAS  Google Scholar 

  21. Xu J, Yan X, Gao R, Mao L, Cotrim AP, Zheng C et al. Effect of irradiation on microvascular endothelial cells of parotid glands in the miniature pig. Int J Radiat Oncol BiolPhys 2010; 78: 897–903.

    Article  CAS  Google Scholar 

  22. Fuks Z, Kolesnick R . Engaging the vascular component of the tumor response. Cancer Cell 2005; 8: 89–91.

    Article  CAS  Google Scholar 

  23. Kirsch DG, Santiago PM, di Tomaso E, Sullivan JM, Hou WS, Dayton T et al. P53 controls radiation-induced gastrointestinal syndrome in mice independent of apoptosis. Science 2010; 327: 593–596.

    Article  CAS  Google Scholar 

  24. Brown M . What causes the radiation gastrointestinal syndrome? overview. Int J Radiat Oncol Biol Phys 2008; 70: 799–800.

    Article  Google Scholar 

  25. Schuller BW, Binns PJ, Riley KJ, Ma L, Hawthorne MF, Coderre JA . Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells. Proc Natl Acad Sci USA 2006; 103: 3787–3792.

    Article  CAS  Google Scholar 

  26. Zheng C, Vitolo JM, Zhang W, Mineshiba F, Chiorini JA, Baum BJ . Extended transgene expression from a nonintegrating adenoviral vector containing retroviral elements. Mol Ther 2008; 16: 1089–1097.

    Article  CAS  Google Scholar 

  27. Nagler RM . The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis 2002; 8: 141–146.

    Article  CAS  Google Scholar 

  28. Konings AW, Coppes RP, Vissink A . On the mechanism of salivary gland radiosensitivity. Int J Radiat Oncol Biol Phys 2005; 62: 1187–1194.

    Article  CAS  Google Scholar 

  29. Radfar L, Sirois DA . Structural and functional injury in minipig salivary glands following fractionated exposure to 70 Gy of ionizing radiation: an animal model for human radiation-induced salivary gland injury. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 96: 267–274.

    Article  Google Scholar 

  30. Lotz S, Caselitz J, Tschakert H, Rehpenning W, Seifert G . Radioprotection of minipig salivary glands by orciprenaline-carbachol. An ultrastructural and semiquantitative light microscopic study. Virchows Arch A 1990; 417: 119–128.

    Article  CAS  Google Scholar 

  31. Ahlner BH, Hagelqvist E, Lind MG, Rudén BI . Irradiation of rabbit submandibular glands. Histology and morphometry after 15 Gy. Acta Otolaryngol 1993; 113: 210–219.

    Article  CAS  Google Scholar 

  32. Stephens LC, Ang KK, Schultheiss TE, King GK, Brock WA, Peters LJ . Target cell and mode of radiation injury in rhesus salivary glands. Radiother Oncol 1986; 7: 165–174.

    Article  CAS  Google Scholar 

  33. Stephens LC, King GK, Peters LJ, Ang KK, Schultheiss TE, Jardine JH . Unique radiosensitivity of serous cells in rhesus monkey submandibular glands. Am J Pathol 1986; 124: 479–487.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kolesnick R, Fuks Z . Radiation and ceramide-induced apoptosis. Oncogene 2003; 22: 5897–5906.

    Article  CAS  Google Scholar 

  35. Michael JM, Lavin MF, Watters DJ . Resistance to radiation-induced apoptosis in Burkitt’s lymphoma cells is associated with defective ceramide signaling. Cancer Res 1997; 57: 3600–3605.

    CAS  PubMed  Google Scholar 

  36. Fei P, EI-Deiry WS . P53 and radiation responses. Oncogene 2003; 22: 5774–5783.

    Article  CAS  Google Scholar 

  37. Radford IR . Initiation of ionizing radiation-induced apoptosis: DNA damage-mediated or does ceramide have a role? Int J Radiat Biol 1999; 75: 521–528.

    Article  CAS  Google Scholar 

  38. Skowronski MT . Distribution and quantitative changes in amounts of aquaporin 1, 5 and 9 in the pig uterus during the estrous cycle and early pregnancy. Reprod Biol Endocrinol 2010; 8: 109.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant nos. 30430690, 81271164 and 81070843) and the National Special Foundation for Excellent PhD Paper No. 200778, and by the Division of Intramural Research of the National Institute of Dental and Craniofacial Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, L., Gao, R., Xu, J. et al. AdLTR2EF1α-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine. Gene Ther 21, 866–873 (2014). https://doi.org/10.1038/gt.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.63

This article is cited by

Search

Quick links