Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin

Abstract

Age-related macular degeneration (AMD) is a vision-threatening disease characterized by choroidal fibrovascular membrane (FVM) formation, choroidal neovascularization (CNV) and choroidal fibrosis. No safe and effective therapeutic method has been developed for the choroidal fibrosis, although anti-vascular endothelial growth factor therapy can partially shrink the CNV. We recently reported that periostin (POSTN), which is produced by retinal pigment epithelial cells, has an important role in the formation of preretinal FVMs, but its role in choroidal FVMs has not been determined. In this study, we used Postn knockout mice to investigate the role played by POSTN in choroidal FVM formation. In addition, we used a new class of RNA interference (RNAi) agent (NK0144) that targets POSTN and determined its effect on choroidal FVM development. Genetic ablation of Postn had an inhibitory effect not only on CNV formation but also on choroidal fibrosis in a mouse CNV model. NK0144 also had a greater inhibitory effect on both the CNV and choroidal fibrosis than control RNAi with no apparent adverse effects. These findings suggest a causal relationship between POSTN and choroidal FVM formation, and also a potential therapeutic role of intravitreal NK0144 for AMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Friedman DS, O'Colmain BJ, Munoz B, Tomany SC, McCarty C, de Jong PT et al. Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 2004; 122: 564–572.

    Article  Google Scholar 

  2. de Jong PT . Age-related macular degeneration. N Engl J Med 2006; 355: 1474–1485.

    Article  CAS  Google Scholar 

  3. Nakata I, Yamashiro K, Nakanishi H, Akagi-Kurashige Y, Miyake M, Tsujikawa A et al. Prevalence and characteristics of age-related macular degeneration in the Japanese population: the Nagahama study. Am J Ophthalmol 2013; 156: 1002–1009 e2.

    Article  Google Scholar 

  4. Chandra SR, Gragoudas ES, Friedman E, Van Buskirk EM, Klein ML . Natural history of disciform degeneration of the macula. Am J Ophthalmol 1974; 78: 579–582.

    Article  CAS  Google Scholar 

  5. Hogg R, Curry E, Muldrew A, Winder J, Stevenson M, McClure M et al. Identification of lesion components that influence visual function in age related macular degeneration. Br J Ophthalmol 2003; 87: 609–614.

    Article  CAS  Google Scholar 

  6. Schlingemann RO . Role of growth factors and the wound healing response in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 2004; 242: 91–101.

    Article  CAS  Google Scholar 

  7. Penfold PL, Killingsworth MC, Sarks SH . Senile macular degeneration: the involvement of immunocompetent cells. Graefes Arch Clin Exp Ophthalmol 1985; 223: 69–76.

    Article  CAS  Google Scholar 

  8. Bloch SB, Lund-Andersen H, Sander B, Larsen M . Subfoveal fibrosis in eyes with neovascular age-related macular degeneration treated with intravitreal ranibizumab. Am J Ophthalmol 2013; 156: 116–124 e1.

    Article  CAS  Google Scholar 

  9. Lopez PF, Grossniklaus HE, Lambert HM, Aaberg TM, Capone A Jr, Sternberg P Jr et al. Pathologic features of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 1991; 112: 647–656.

    Article  CAS  Google Scholar 

  10. Grossniklaus HE, Martinez JA, Brown VB, Lambert HM, Sternberg P Jr, Capone A Jr et al. Immunohistochemical and histochemical properties of surgically excised subretinal neovascular membranes in age-related macular degeneration. Am J Ophthalmol 1992; 114: 464–472.

    Article  CAS  Google Scholar 

  11. Watanabe D, Takagi H, Suzuma K, Oh H, Ohashi H, Honda Y . Expression of connective tissue growth factor and its potential role in choroidal neovascularization. Retina 2005; 25: 911–918.

    Article  Google Scholar 

  12. Nagineni CN, Samuel W, Nagineni S, Pardhasaradhi K, Wiggert B, Detrick B et al. Transforming growth factor-beta induces expression of vascular endothelial growth factor in human retinal pigment epithelial cells: involvement of mitogen-activated protein kinases. J Cell Physiol 2003; 197: 453–462.

    Article  CAS  Google Scholar 

  13. Recalde S, Zarranz-Ventura J, Fernandez-Robredo P, Garcia-Gomez PJ, Salinas-Alaman A, Borras-Cuesta F et al. Transforming growth factor-beta inhibition decreases diode laser-induced choroidal neovascularization development in rats: P17 and P144 peptides. Invest Ophthalmol Vis Sci 2011; 52: 7090–7097.

    Article  CAS  Google Scholar 

  14. Daniel E, Toth CA, Grunwald JE, Jaffe GJ, Martin DF, Fine SL et al. Risk of scar in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2014; 121: 656–666.

    Article  Google Scholar 

  15. Hwang JC, Del Priore LV, Freund KB, Chang S, Iranmanesh R . Development of subretinal fibrosis after anti-VEGF treatment in neovascular age-related macular degeneration. Ophthalmic Surg Lasers Imaging 2011; 42: 6–11.

    Article  Google Scholar 

  16. Grunwald JE, Daniel E, Huang J, Ying GS, Maguire MG, Toth CA et al. Risk of geographic atrophy in the comparison of age-related macular degeneration treatments trials. Ophthalmology 2014; 121: 150–161.

    Article  Google Scholar 

  17. Yoshida S, Ogura A, Ishikawa K, Yoshida A, Kohno R, Yamaji Y et al. Gene expression profile of fibrovascular membranes from patients with proliferative diabetic retinopathy. Br J Ophthalmol 2010; 94: 795–801.

    Article  Google Scholar 

  18. Yoshida S, Ishikawa K, Asato R, Arima M, Sassa Y, Yoshida A et al. Increased expression of periostin in vitreous and fibrovascular membranes obtained from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 2011; 52: 5670–5678.

    Article  CAS  Google Scholar 

  19. Asato R, Yoshida S, Ogura A, Nakama T, Ishikawa K, Nakao S et al. Comparison of gene expression profile of epiretinal membranes obtained from eyes with proliferative vitreoretinopathy to that of secondary epiretinal membranes. PLoS One 2013; 8: e54191.

    Article  CAS  Google Scholar 

  20. Ishikawa K, Yoshida S, Nakao S, Nakama T, Kita T, Asato R et al. Periostin promotes the generation of fibrous membranes in proliferative vitreoretinopathy. FASEB J 2014; 28: 131–142.

    Article  CAS  Google Scholar 

  21. Kudo A . Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 2011; 68: 3201–3207.

    Article  CAS  Google Scholar 

  22. Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 2014; 71: 1279–1288.

    Article  CAS  Google Scholar 

  23. Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A et al. periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 2005; 25: 11131–11144.

    Article  CAS  Google Scholar 

  24. Snider P, Hinton RB, Moreno-Rodriguez RA, Wang J, Rogers R, Lindsley A et al. Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circ Res 2008; 102: 752–760.

    Article  CAS  Google Scholar 

  25. Malanchi I, Santamaria-Martinez A, Susanto E, Peng H, Lehr HA, Delaloye JF et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012; 481: 85–89.

    Article  CAS  Google Scholar 

  26. Shimazaki M, Nakamura K, Kii I, Kashima T, Amizuka N, Li M et al. Periostin is essential for cardiac healing after acute myocardial infarction. J Exp Med 2008; 205: 295–303.

    Article  CAS  Google Scholar 

  27. Ontsuka K, Kotobuki Y, Shiraishi H, Serada S, Ohta S, Tanemura A et al. Periostin, a matricellular protein, accelerates cutaneous wound repair by activating dermal fibroblasts. Exp Dermatol 2012; 21: 331–336.

    Article  CAS  Google Scholar 

  28. Masuoka M, Shiraishi H, Ohta S, Suzuki S, Arima K, Aoki S et al. Periostin promotes chronic allergic inflammation in response to Th2 cytokines. J Clin Invest 2012; 122: 2590–2600.

    Article  CAS  Google Scholar 

  29. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T . Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 2001; 411: 494–498.

    Article  CAS  Google Scholar 

  30. Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK . RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011; 11: 59–67.

    Article  CAS  Google Scholar 

  31. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 2008; 452: 591–597.

    Article  CAS  Google Scholar 

  32. Yang Z, Stratton C, Francis PJ, Kleinman ME, Tan PL, Gibbs D et al. Toll-like receptor 3 and geographic atrophy in age-related macular degeneration. N Engl J Med 2008; 359: 1456–1463.

    Article  CAS  Google Scholar 

  33. Cho WG, Albuquerque RJ, Kleinman ME, Tarallo V, Greco A, Nozaki M et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. Proc Natl Acad Sci USA 2009; 106: 7137–7142.

    Article  CAS  Google Scholar 

  34. Kleinman ME, Kaneko H, Cho WG, Dridi S, Fowler BJ, Blandford AD et al. Short-interfering RNAs induce retinal degeneration via TLR3 and IRF3. Mol Ther 2012; 20: 101–108.

    Article  CAS  Google Scholar 

  35. Hamasaki T, Suzuki H, Shirohzu H, Matsumoto T, D'Alessandro-Gabazza CN, Gil-Bernabe P et al. Efficacy of a novel class of RNA interference therapeutic agents. PLoS One 2012; 7: e42655.

    Article  CAS  Google Scholar 

  36. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006; 355: 1419–1431.

    Article  CAS  Google Scholar 

  37. Gragoudas ES, Adamis AP, Cunningham ET Jr, Feinsod M, Guyer DR, Group VISiONCT. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004; 351: 2805–2816.

    Article  CAS  Google Scholar 

  38. Stewart MW, Rosenfeld PJ . Predicted biological activity of intravitreal VEGF Trap. Br J Ophthalmol 2008; 92: 667–668.

    Article  CAS  Google Scholar 

  39. Mousa SA, Lorelli W, Campochiaro PA . Role of hypoxia and extracellular matrix-integrin binding in the modulation of angiogenic growth factors secretion by retinal pigmented epithelial cells. J Cell Biochem 1999; 74: 135–143.

    Article  CAS  Google Scholar 

  40. Friedlander M, Theesfeld CL, Sugita M, Fruttiger M, Thomas MA, Chang S et al. Involvement of integrins alpha v beta 3 and alpha v beta 5 in ocular neovascular diseases. Proc Natl Acad Sci USA 1996; 93: 9764–9769.

    Article  CAS  Google Scholar 

  41. Saint-Geniez M, Kurihara T, Sekiyama E, Maldonado AE, D'Amore PA . An essential role for RPE-derived soluble VEGF in the maintenance of the choriocapillaris. Proc Natl Acad Sci USA 2009; 106: 18751–18756.

    Article  CAS  Google Scholar 

  42. Fujita Y, Takeshita F, Mizutani T, Ohgi T, Kuwano K, Ochiya T . A novel platform to enable inhaled naked RNAi medicine for lung cancer. Sci Rep 2013; 3: 3325.

    Article  Google Scholar 

  43. Kariko K, Bhuyan P, Capodici J, Weissman D . Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through Toll-like receptor 3. J Immunol 2004; 172: 6545–6549.

    Article  CAS  Google Scholar 

  44. Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc 2013; 8: 2197–2211.

    Article  CAS  Google Scholar 

  45. Ishikawa K, Yoshida S, Kadota K, Nakamura T, Niiro H, Arakawa S et al. Gene expression profile of hyperoxic and hypoxic retinas in a mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci 2010; 51: 4307–4319.

    Article  Google Scholar 

  46. Ishikawa K, Yoshida S, Nakao S, Sassa Y, Asato R, Kohno R et al. Bone marrow-derived monocyte lineage cells recruited by MIP-1beta promote physiological revascularization in mouse model of oxygen-induced retinopathy. Lab Invest 2012; 92: 91–101.

    Article  CAS  Google Scholar 

  47. Arima M, Yoshida S, Nakama T, Ishikawa K, Nakao S, Yoshimura T et al. Involvement of periostin in regression of hyaloidvascular system during ocular development. Invest Ophthalmol Vis Sci 2012; 53: 6495–6503.

    Article  CAS  Google Scholar 

  48. Yamaji Y, Yoshida S, Ishikawa K, Sengoku A, Sato K, Yoshida A et al. TEM7 (PLXDC1) in neovascular endothelial cells of fibrovascular membranes from patients with proliferative diabetic retinopathy. Invest Ophthalmol Vis Sci 2008; 49: 3151–3157.

    Article  Google Scholar 

  49. Lin H, Qian J, Castillo AC, Long B, Keyes KT, Chen G et al. Effect of miR-23 on oxidant-induced injury in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 2011; 52: 6308–6314.

    Article  CAS  Google Scholar 

  50. Tanimoto N, Muehlfriedel RL, Fischer MD, Fahl E, Humphries P, Biel M et al. Vision tests in the mouse: functional phenotyping with electroretinography. Front Biosci (Landmark Ed) 2009; 14: 2730–2737.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Research Support Center (Graduate School of Medical Sciences, Kyushu University) for technical support and Masayo Eto, Kinuko Sasada and Hiroko Miura for their excellent technical assistance. This work was supported in part by JSPS KAKENHI grant numbers 24249083, 23592574, 26293374, 26670757, Takeda Science Foundation, and Adaptable and Seamless Technology Transfer Program through Target-driven R&D from the Japan Science and Technology Agency. T Nakama is supported by a fellowship from the Japan Society for the Promotion of Science for Young Scientists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Yoshida.

Ethics declarations

Competing interests

The patent on periostin (WPO Patent WO/2013/147140) became public, and in these patents, the names of TN, SY, KI, TH, TO and TI are included.

This work was supported in part by A-STEP (Adaptable & Seamless Technology Transfer Program through Target-driven R&D) governed by Japan Science and Technology Agency.

SY is supported by JSPS 26293374.

KT, AS and KY are employees of AQUA Therapeutics and hold equity.

TH, TO and HH are employees of BONAC Corporation and hold equity.

The remaining authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakama, T., Yoshida, S., Ishikawa, K. et al. Inhibition of choroidal fibrovascular membrane formation by new class of RNA interference therapeutic agent targeting periostin. Gene Ther 22, 127–137 (2015). https://doi.org/10.1038/gt.2014.112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.112

This article is cited by

Search

Quick links