Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vaccination with tumor cells expressing IL-15 and IL-15Rα inhibits murine breast and prostate cancer

Abstract

A number of antitumor vaccines have recently shown promise in upregulating immune responses against tumor antigens and improving patient survival. In this study, we examine the effectiveness of vaccination using interleukin (IL)-15-expressing tumor cells and also examine their ability to upregulate immune responses to tumor antigens. We demonstrated that the coexpression of IL-15 with its receptor, IL-15Rα, increased the cell-surface expression and secretion of IL-15. We show that a gene transfer approach using recombinant adenovirus to express IL-15 and IL-15Rα in murine TRAMP-C2 prostate or TS/A breast tumors induced antitumor immune responses. From this, we developed a vaccine platform, consisting of TRAMP-C2 prostate cancer cells or TS/A breast cancer cells coexpressing IL-15 and IL-15Rα that inhibited tumor formation when mice were challenged with tumor. Inhibition of tumor growth led to improved survival when compared with animals receiving cells expressing IL-15 alone or unmodified tumor cells. Animals vaccinated with tumor cells coexpressing IL-15 and IL-15Rα showed greater tumor infiltration with CD8+ T and natural killer (NK) cells, as well as increased antitumor CD8+ T-cell responses. Vaccination with IL-15/IL-15Rα-modified TS/A breast cancer cells provided a survival advantage to mice challenged with unrelated murine TUBO breast cancer cells, indicating the potential for allogeneic IL-15/IL-15Rα-expressing vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Keenan BP, Jaffee EM . Whole cell vaccines-past progress and future strategies. Semin Oncol 2012; 39: 276–286.

    Article  CAS  Google Scholar 

  2. Eager R, Nemunaitis J . GM-CSF gene-transduced tumor vaccines. Mol Ther 2005; 12: 18–27.

    Article  CAS  Google Scholar 

  3. Higano CS, Somer F, Curti B, Petrylak B, Drake D, Schnell C et al. A phase III trial of GVAX immunotherapy for prostate cancer versus docetaxel plus prednisone in asymptomatic, castration-resistant prostate cancer (CRPC). ASCO Genitourinary Cancers Symposium 2009, LBA150.

  4. Small ED, Gerritsen T, Rolland W, Hoskin F, Smith P, Parker D et al. A phase III trial of GVAX immunotherapy for prostate cancer in combination with docetaxel versus docetaxel plus prednisone in symptomatic, castration-resistant prostate cancer. ASCO Genitourinary Cancers Symposium 2009: 7.

  5. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–780.

    Article  CAS  Google Scholar 

  6. Pulendran B, Dillon S, Joseph C, Curiel T, Banchereau J, Mohamadzadeh M . Dendritic cells generated in the presence of GM-CSF plus IL-15 prime potent CD8+ Tc1 responses in vivo. Eur J Immunol 2004; 34: 66–73.

    Article  CAS  Google Scholar 

  7. Giri JG, Ahdieh M, Eisenman J, Shanebeck K, Grabstein K, Kumaki S et al. Utilization of the beta and gamma chains of the IL-2 receptor by the novel cytokine IL-15. EMBO J 1994; 13: 2822–2830.

    Article  CAS  Google Scholar 

  8. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K et al. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. EMBO J 1995; 14: 3654–3663.

    Article  CAS  Google Scholar 

  9. Dubois S, Mariner J, Waldmann TA, Tagaya Y . IL-15Ralpha recycles and presents IL-15 in trans to neighboring cells. Immunity 2002; 17: 537–547.

    Article  CAS  Google Scholar 

  10. Burkett PR, Koka R, Chien M, Chai S, Boone DL, Ma A . Coordinate expression and trans presentation of interleukin (IL)-15R alpha and IL-15 supports natural killer cell and memory CD8+ T cell homeostasis. J Exp Med 2004; 200: 825–834.

    Article  CAS  Google Scholar 

  11. Tarkowski M, Ferraris L, Martone S, Strambio de Castillia F, Misciagna D, Mazzucchelli RI et al. Expression of interleukin-15 and interleukin-15R alpha in monocytes of HIV type 1-infected patients with different courses of disease progression. AIDS Res Hum Retroviruses 2012; 28: 693–701.

    Article  CAS  Google Scholar 

  12. Steel JC, Waldmann TA, Morris JC . Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci 2012; 33: 35–41.

    Article  CAS  Google Scholar 

  13. Conlon KMJ, Janik J, Stewart D, Rosenberg SA, Worthy T, Fojo T et al. Phase I study of intravenous recombinant human interleukin-15 (rh IL-15) in adults with metastatic malignant melanoma and renal cell carcinoma. J Immunother 2012; 35: 102–103.

    Google Scholar 

  14. Waitz R, Solomon SB, Petre EN, Trumble AE, Fasso M, Norton L et al. Potent induction of tumor immunity by combining tumor cryoablation with anti-CTLA-4 therapy. Cancer Res 2012; 72: 430–439.

    Article  CAS  Google Scholar 

  15. Yu P, Steel JC, Zhang M, Morris JC, Waldmann TA . Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res 2010; 16: 6019–6028.

    Article  CAS  Google Scholar 

  16. Zhang M, Yao Z, Dubois S, Ju W, Muller JR, Waldmann TA . Interleukin-15 combined with an anti-CD40 antibody provides enhanced therapeutic efficacy for murine models of colon cancer. Proc Natl Acad Sci USA 2009; 106: 7513–7518.

    Article  CAS  Google Scholar 

  17. Kolibab K, Yang A, Derrick SC, Waldmann TA, Perera LP, Morris SL . Highly persistent and effective prime/boost regimens against tuberculosis that use a multivalent modified vaccine virus Ankara-based tuberculosis vaccine with interleukin-15 as a molecular adjuvant. Clin Vaccine Immunol 2010; 17: 793–801.

    Article  CAS  Google Scholar 

  18. Perera PY, Derrick SC, Kolibab K, Momoi F, Yamamoto M, Morris SL et al. A multi-valent vaccinia virus-based tuberculosis vaccine molecularly adjuvanted with interleukin-15 induces robust immune responses in mice. Vaccine 2009; 27: 2121–2127.

    Article  CAS  Google Scholar 

  19. Sui Y, Zhu Q, Gagnon S, Dzutsev A, Terabe M, Vaccari M et al. Innate and adaptive immune correlates of vaccine and adjuvant-induced control of mucosal transmission of SIV in macaques. Proc Natl Acad Sci USA 2010; 107: 9843–9848.

    Article  CAS  Google Scholar 

  20. Kraynyak KA, Kutzler MA, Cisper NJ, Laddy DJ, Morrow MP, Waldmann TA et al. Plasmid-encoded interleukin-15 receptor alpha enhances specific immune responses induced by a DNA vaccine in vivo. Hum Gene Ther 2009; 20: 1143–1156.

    Article  CAS  Google Scholar 

  21. Steel JC, Ramlogan CA, Yu P, Sakai Y, Forni G, Waldmann TA et al. Interleukin-15 and its receptor augment dendritic cell vaccination against the neu oncogene through the induction of antibodies partially independent of CD4 help. Cancer Res 2010; 70: 1072–1081.

    Article  CAS  Google Scholar 

  22. Stoklasek TA, Schluns KS, Lefrancois L . Combined IL-15/IL-15Ralpha immunotherapy maximizes IL-15 activity in vivo. J Immunol 2006; 177: 6072–6080.

    Article  CAS  Google Scholar 

  23. Valentin A, von Gegerfelt A, Rosati M, Miteloudis G, Alicea C, Bergamaschi C et al. Repeated DNA therapeutic vaccination of chronically SIV-infected macaques provides additional virological benefit. Vaccine 2010; 28: 1962–1974.

    Article  CAS  Google Scholar 

  24. Bergamaschi C, Bear J, Rosati M, Beach RK, Alicea C, Sowder R et al. Circulating IL-15 exists as heterodimeric complex with soluble IL-15Ralpha in human and mouse serum. Blood 2012; 120: e1–e8.

    Article  CAS  Google Scholar 

  25. Bergamaschi C, Rosati M, Jalah R, Valentin A, Kulkarni V, Alicea C et al. Intracellular interaction of interleukin-15 with its receptor alpha during production leads to mutual stabilization and increased bioactivity. J Biol Chem 2008; 283: 4189–4199.

    Article  CAS  Google Scholar 

  26. Sandau MM, Schluns KS, Lefrancois L, Jameson SC . Cutting edge: transpresentation of IL-15 by bone marrow-derived cells necessitates expression of IL-15 and IL-15R alpha by the same cells. J Immunol 2004; 173: 6537–6541.

    Article  CAS  Google Scholar 

  27. Stonier SW, Schluns KS . Trans-presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol Lett 2010; 127: 85–92.

    Article  CAS  Google Scholar 

  28. Hazama S, Noma T, Wang F, Iizuka N, Ogura Y, Yoshimura K et al. Tumour cells engineered to secrete interleukin-15 augment anti-tumour immune responses in vivo. Br J Cancer 1999; 80: 1420–1426.

    Article  CAS  Google Scholar 

  29. He X, Li W, Wang Y, Hou L, Zhu L . Inhibition of colon tumor growth by IL-15 immunogene therapy. Mol Med Rep 2012; 5: 96–102.

    PubMed  Google Scholar 

  30. Meazza R, Lollini PL, Nanni P, De Giovanni C, Gaggero A, Comes A et al. Gene transfer of a secretable form of IL-15 in murine adenocarcinoma cells: effects on tumorigenicity, metastatic potential and immune response. Int J Cancer 2000; 87: 574–581.

    Article  CAS  Google Scholar 

  31. Tasaki K, Yoshida Y, Miyauchi M, Maeda T, Takenaga K, Kouzu T et al. Transduction of murine colon carcinoma cells with interleukin-15 gene induces antitumor effects in immunocompetent and immunocompromised hosts. Cancer Gene Ther 2000; 7: 255–261.

    Article  CAS  Google Scholar 

  32. Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR . Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol 2008; 180: 2099–2106.

    Article  CAS  Google Scholar 

  33. Melchionda F, Fry TJ, Milliron MJ, McKirdy MA, Tagaya Y, Mackall CL . Adjuvant IL-7 or IL-15 overcomes immunodominance and improves survival of the CD8+ memory cell pool. J Clin Invest 2005; 115: 1177–1187.

    Article  CAS  Google Scholar 

  34. Nanni P, Pupa SM, Nicoletti G, De Giovanni C, Landuzzi L, Rossi I et al. p185(neu) protein is required for tumor and anchorage-independent growth, not for cell proliferation of transgenic mammary carcinoma. Int J Cancer 2000; 87: 186–194.

    Article  CAS  Google Scholar 

  35. Rovero S, Amici A, Di Carlo E, Bei R, Nanni P, Quaglino E et al. DNA vaccination against rat her-2/Neu p185 more effectively inhibits carcinogenesis than transplantable carcinomas in transgenic BALB/c mice. J Immunol 2000; 165: 5133–5142.

    Article  CAS  Google Scholar 

  36. Ng P, Parks RJ, Cummings DT, Evelegh CM, Graham FL . An enhanced system for construction of adenoviral vectors by the two-plasmid rescue method. Hum Gene Ther 2000; 11: 693–699.

    Article  CAS  Google Scholar 

  37. Fasso M, Waitz R, Hou Y, Rim T, Greenberg NM, Shastri N et al. SPAS-1 (stimulator of prostatic adenocarcinoma-specific T cells)/SH3GLB2: a prostate tumor antigen identified by CTLA-4 blockade. Proc Natl Acad Sci USA 2008; 105: 3509–3514.

    Article  CAS  Google Scholar 

  38. Rosato A, Dalla Santa S, Zoso A, Giacomelli S, Milan G, Macino B et al. The cytotoxic T-lymphocyte response against a poorly immunogenic mammary adenocarcinoma is focused on a single immunodominant class I epitope derived from the gp70 Env product of an endogenous retrovirus. Cancer Res 2003; 63: 2158–2163.

    CAS  PubMed  Google Scholar 

  39. Nava-Parada P, Forni G, Knutson KL, Pease LR, Celis E . Peptide vaccine given with a Toll-like receptor agonist is effective for the treatment and prevention of spontaneous breast tumors. Cancer Res 2007; 67: 1326–1334.

    Article  CAS  Google Scholar 

  40. Schirmbeck R, Reimann J, Kochanek S, Kreppel F . The immunogenicity of adenovirus vectors limits the multispecificity of CD8 T-cell responses to vector-encoded transgenic antigens. Mol Ther 2008; 16: 1609–1616.

    Article  CAS  Google Scholar 

  41. Soman G, Yang X, Jiang H, Giardina S, Vyas V, Mitra G et al. MTS dye based colorimetric CTLL-2 cell proliferation assay for product release and stability monitoring of interleukin-15: assay qualification, standardization and statistical analysis. J Immunol Methods 2009; 348: 83–94.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Intramural Research Program of the National Cancer Institute, National Institutes of Health, Bethesda, MD, USA, the University of Cincinnati Cancer Institute, and a grant from the Lcs Foundation, Cincinnati, OH, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J C Steel.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, J., Ramlogan-Steel, C., Yu, P. et al. Vaccination with tumor cells expressing IL-15 and IL-15Rα inhibits murine breast and prostate cancer. Gene Ther 21, 393–401 (2014). https://doi.org/10.1038/gt.2014.10

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2014.10

This article is cited by

Search

Quick links