Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A novel gene therapy strategy using secreted multifunctional anti-HIV proteins to confer protection to gene-modified and unmodified target cells

Abstract

Current human immunodeficiency virus type I (HIV) gene therapy strategies focus on rendering HIV target cells non-permissive to viral replication. However, gene-modified cells fail to accumulate in patients and the virus continues to replicate in the unmodified target cell population. We have designed lentiviral vectors encoding secreted anti-HIV proteins to protect both gene-modified and unmodified cells from infection. Soluble CD4 (sCD4), a secreted single chain variable fragment (sscFv17b) and a secreted fusion inhibitor (sFIT45) were used to target receptor binding, co-receptor binding and membrane fusion, respectively. Additionally, we designed bi- and tri-functional fusion proteins to exploit the multistep nature of HIV entry. Of the seven antiviral proteins tested, sCD4, sCD4-scFv17b, sCD4-FIT45 and sCD4-scFv17b-FIT45 efficiently inhibited HIV entry. The neutralization potency of the bi-functional fusion proteins sCD4-scFv17b and sCD4-FIT45 was superior to that of sCD4 and the Food and Drug Administration-approved fusion inhibitor T-20. In co-culture experiments, sCD4, sCD4-scFv17b and sCD4-FIT45 secreted from gene-modified producer cells conferred substantial protection to unmodified peripheral blood mononuclear cells. In conclusion, continuous delivery of secreted anti-HIV proteins via gene therapy may be a promising strategy to overcome the limitations of the current treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, Boni J et al. HIV rebounds from latently infected cells, rather than from continuing low-level replication. Proc Natl Acad Sci USA 2008; 105: 16725–16730.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nachega JB, Mugavero MJ, Zeier M, Vitoria M, Gallant JE . Treatment simplification in HIV-infected adults as a strategy to prevent toxicity, improve adherence, quality of life and decrease healthcare costs. Patient Prefer Adherence 2011; 5: 357–367.

    PubMed  PubMed Central  Google Scholar 

  3. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Zhang F, Adams S et al. Hematopoietic stem cell gene therapy for adenosine deaminase-deficient severe combined immunodeficiency leads to long-term immunological recovery and metabolic correction. Sci Transl Med 2011; 3: 97ra80.

    PubMed  Google Scholar 

  4. Gaspar HB, Cooray S, Gilmour KC, Parsley KL, Adams S, Howe SJ et al. Long-term persistence of a polyclonal T cell repertoire after gene therapy for X-linked severe combined immunodeficiency. Sci Transl Med 2011; 3: 97ra79.

    PubMed  Google Scholar 

  5. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Bougneres P, Schmidt M, Kalle CV et al. Lentiviral hematopoietic cell gene therapy for X-linked adrenoleukodystrophy. Methods Enzymol 2012; 507: 187–198.

    CAS  PubMed  Google Scholar 

  6. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    CAS  PubMed  Google Scholar 

  7. Nathwani AC, Tuddenham EG, Rangarajan S, Rosales C, McIntosh J, Linch DC et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N Engl J Med 2011; 365: 2357–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hutter G, Nowak D, Mossner M, Ganepola S, Mussig A, Allers K et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009; 360: 692–698.

    PubMed  Google Scholar 

  9. Allers K, Hutter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E et al. Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 2011; 117: 2791–2799.

    CAS  PubMed  Google Scholar 

  10. Joshi S, Van Brunschot A, Asad S, van der Elst I, Read SE, Bernstein A . Inhibition of human immunodeficiency virus type 1 multiplication by antisense and sense RNA expression. J Virol 1991; 65: 5524–5530.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Weerasinghe M, Liem SE, Asad S, Read SE, Joshi S . Resistance to human immunodeficiency virus type 1 (HIV-1) infection in human CD4+ lymphocyte-derived cell lines conferred by using retroviral vectors expressing an HIV-1 RNA-specific ribozyme. J Virol 1991; 65: 5531–5534.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Ramezani A, Joshi S . Comparative analysis of five highly conserved target sites within the HIV-1 RNA for their susceptibility to hammerhead ribozyme-mediated cleavage in vitro and in vivo. Antisense Nucleic Acid Drug Dev 1996; 6: 229–235.

    CAS  PubMed  Google Scholar 

  13. Lamothe B, Joshi S . Current developments and future prospects for HIV gene therapy using interfering RNA-based strategies. Front Biosci 2000; 5: D527–D555.

    CAS  PubMed  Google Scholar 

  14. Ding SF, Lombardi R, Nazari R, Joshi S . A combination anti-HIV-1 gene therapy approach using a single transcription unit that expresses antisense, decoy, and sense RNAs, and trans-dominant negative mutant Gag and Env proteins. Front Biosci 2002; 7: a15–a28.

    CAS  PubMed  Google Scholar 

  15. Ramezani A, Ma XZ, Nazari R, Joshi S . Development and testing of retroviral vectors expressing multimeric hammerhead ribozymes targeted against all major clades of HIV-1. Front Biosci 2002; 7: a29–a36.

    CAS  PubMed  Google Scholar 

  16. Rossi JJ, June CH, Kohn DB . Genetic therapies against HIV. Nat Biotechnol 2007; 25: 1444–1454.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Nazari R, Ma XZ, Joshi S . Inhibition of human immunodeficiency virus-1 entry using vectors expressing a multimeric hammerhead ribozyme targeting the CCR5 mRNA. J Gen Virol 2008; 89 (Pt 9): 2252–2261.

    CAS  PubMed  Google Scholar 

  18. Nazari R, Joshi S . Exploring the potential of group II introns to inactivate human immunodeficiency virus type 1. J Gen Virol 2008; 89 (Pt 10): 2605–2610.

    CAS  PubMed  Google Scholar 

  19. Liem SE, Ramezani A, Li X, Joshi S . The development and testing of retroviral vectors expressing trans-dominant mutants of HIV-1 proteins to confer anti-HIV-1 resistance. Hum Gene Ther 1993; 4: 625–634.

    CAS  PubMed  Google Scholar 

  20. Melekhovets YF, Joshi S . Fusion with an RNA binding domain to confer target RNA specificity to an RNase: design and engineering of Tat-RNase H that specifically recognizes and cleaves HIV-1 RNA in vitro. Nucleic Acids Res 1996; 24: 1908–1912.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Singwi S, Ramezani A, Ding SF, Joshi S . Targeted RNases: a feasibility study for use in HIV gene therapy. Gene Therapy 1999; 6: 913–921.

    CAS  PubMed  Google Scholar 

  22. Singwi S, Joshi S . Potential nuclease-based strategies for HIV gene therapy. Front Biosci 2000; 5: D556–D579.

    CAS  PubMed  Google Scholar 

  23. Swan CH, Buhler B, Steinberger P, Tschan MP, Barbas CF 3rd, Torbett BE . T-cell protection and enrichment through lentiviral CCR5 intrabody gene delivery. Gene Therapy 2006; 13: 1480–1492.

    CAS  PubMed  Google Scholar 

  24. van Lunzen J, Glaunsinger T, Stahmer I, von Baehr V, Baum C, Schilz A et al. Transfer of autologous gene-modified T cells in HIV-infected patients with advanced immunodeficiency and drug-resistant virus. Mol Ther 2007; 15: 1024–1033.

    CAS  PubMed  Google Scholar 

  25. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010; 28: 839–847.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Burnett JC, Zaia JA, Rossi JJ . Creating genetic resistance to HIV. Curr Opin Immunol 2012; 24: 625–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Kitchen SG, Shimizu S, An DS . Stem cell-based anti-HIV gene therapy. Virology 2011; 411: 260–272.

    CAS  PubMed  Google Scholar 

  28. Scholler J, Brady TL, Binder-Scholl G, Hwang WT, Plesa G, Hege KM et al. Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Sci Transl Med 2012; 4: 132ra53.

    PubMed  PubMed Central  Google Scholar 

  29. von Laer D, Baum C, Protzer U . Antiviral gene therapy. Handb Exp Pharmacol 2009; 189: 265–297.

    CAS  Google Scholar 

  30. Morgan RA, Looney DJ, Muenchau DD, Wong-Staal F, Gallo RC, Anderson WF . Retroviral vectors expressing soluble CD4: a potential gene therapy for AIDS. AIDS Res Hum Retroviruses 1990; 6: 183–191.

    CAS  PubMed  Google Scholar 

  31. Morgan RA, Baler-Bitterlich G, Ragheb JA, Wong-Staal F, Gallo RC, Anderson WF . Further evaluation of soluble CD4 as an anti-HIV type 1 gene therapy: demonstration of protection of primary human peripheral blood lymphocytes from infection by HIV type 1. AIDS Res Hum Retroviruses 1994; 10: 1507–1515.

    CAS  PubMed  Google Scholar 

  32. Egerer L, Volk A, Kahle J, Kimpel J, Brauer F, Hermann FG et al. Secreted antiviral entry inhibitory (SAVE) peptides for gene therapy of HIV infection. Mol Ther 2011; 19: 1236–1244.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Joseph A, Zheng JH, Chen K, Dutta M, Chen C, Stiegler G et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010; 84: 6645–6653.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Balazs AB, Chen J, Hong CM, Rao DS, Yang L, Baltimore D . Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 2012; 481: 81–84.

    CAS  Google Scholar 

  35. West AP Jr, Galimidi RP, Foglesong CP, Gnanapragasam PN, Klein JS, Bjorkman PJ . Evaluation of CD4-CD4i antibody architectures yields potent, broadly cross-reactive anti-human immunodeficiency virus reagents. J Virol 2010; 84: 261–269.

    CAS  PubMed  Google Scholar 

  36. Trkola A, Kuster H, Rusert P, Joos B, Fischer M, Leemann C et al. Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 2005; 11: 615–622.

    CAS  PubMed  Google Scholar 

  37. Mehandru S, Vcelar B, Wrin T, Stiegler G, Joos B, Mohri H et al. Adjunctive passive immunotherapy in human immunodeficiency virus type 1-infected individuals treated with antiviral therapy during acute and early infection. J Virol 2007; 81: 11016–11031.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nagashima KA, Thompson DA, Rosenfield SI, Maddon PJ, Dragic T, Olson WC . Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183: 1121–1125.

    CAS  PubMed  Google Scholar 

  39. Kagiampakis I, Gharibi A, Mankowski MK, Snyder BA, Ptak RG, Alatas K et al. Potent strategy to inhibit HIV-1 by binding both gp120 and gp41. Antimicrob Agents Chemother 2011; 55: 264–275.

    CAS  PubMed  Google Scholar 

  40. Dey B, Del Castillo CS, Berger EA . Neutralization of human immunodeficiency virus type 1 by sCD4-17b, a single-chain chimeric protein, based on sequential interaction of gp120 with CD4 and coreceptor. J Virol 2003; 77: 2859–2865.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lagenaur LA, Villarroel VA, Bundoc V, Dey B, Berger EA . sCD4-17b bifunctional protein: extremely broad and potent neutralization of HIV-1 Env pseudotyped viruses from genetically diverse primary isolates. Retrovirology 2010; 7: 11.

    PubMed  PubMed Central  Google Scholar 

  42. Lu L, Pan C, Li Y, Lu H, He W, Jiang S . A bivalent recombinant protein inactivates HIV-1 by targeting the gp41 prehairpin fusion intermediate induced by CD4 D1D2 domains. Retrovirology 2012; 9: 104.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wilen CB, Tilton JC, Doms RW . Molecular mechanisms of HIV entry. Adv Exp Med Biol 2012; 726: 223–242.

    CAS  PubMed  Google Scholar 

  44. Orloff SL, Kennedy MS, Belperron AA, Maddon PJ, McDougal JS . Two mechanisms of soluble CD4 (sCD4)-mediated inhibition of human immunodeficiency virus type 1 (HIV-1) infectivity and their relation to primary HIV-1 isolates with reduced sensitivity to sCD4. J Virol 1993; 67: 1461–1471.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Salzwedel K, Smith ED, Dey B, Berger EA . Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J Virol 2000; 74: 326–333.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pusch O, Kalyanaraman R, Tucker LD, Wells JM, Ramratnam B, Boden D . An anti-HIV microbicide engineered in commensal bacteria: secretion of HIV-1 fusion inhibitors by lactobacilli. AIDS 2006; 20: 1917–1922.

    CAS  PubMed  Google Scholar 

  47. Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A et al. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog 2009; 5: e1000360.

    PubMed  PubMed Central  Google Scholar 

  48. Petersen TN, Brunak S, von Heijne G, Nielsen H . SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011; 8: 785–786.

    CAS  PubMed  Google Scholar 

  49. Meek RL, Walsh KA, Palmiter RD . The signal sequence of ovalbumin is located near the NH2 terminus. J Biol Chem 1982; 257: 12245–12251.

    CAS  PubMed  Google Scholar 

  50. Eskridge EM, Shields D . Cell-free processing and segregation of insulin precursors. J Biol Chem 1983; 258: 11487–11491.

    CAS  PubMed  Google Scholar 

  51. Eckert DM, Kim PS . Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 2001; 70: 777–810.

    CAS  PubMed  Google Scholar 

  52. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ . Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci USA 1994; 91: 9770–9774.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Sabin C, Corti D, Buzon V, Seaman MS, Lutje Hulsik D, Hinz A et al. Crystal structure and size-dependent neutralization properties of HK20, a human monoclonal antibody binding to the highly conserved heptad repeat 1 of gp41. PLoS Pathog 2010; 6: e1001195.

    PubMed  PubMed Central  Google Scholar 

  54. Chong H, Yao X, Zhang C, Cai L, Cui S, Wang Y et al. Biophysical property and broad anti-HIV activity of albuvirtide, a 3-maleimimidopropionic acid-modified peptide fusion inhibitor. PLoS One 2012; 7: e32599.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Yao X, Chong H, Zhang C, Waltersperger S, Wang M, Cui S et al. Broad antiviral activity and crystal structure of HIV-1 fusion inhibitor sifuvirtide. J Biol Chem 2012; 287: 6788–6796.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Schacker T, Collier AC, Coombs R, Unadkat JD, Fox I, Alam J et al. Phase I study of high-dose, intravenous rsCD4 in subjects with advanced HIV-1 infection. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 9: 145–152.

    CAS  PubMed  Google Scholar 

  57. Rapoport TA . Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 2007; 450: 663–669.

    CAS  PubMed  Google Scholar 

  58. Chen Y, Zhang Y, Yin Y, Gao G, Li S, Jiang Y et al. SPD—a web-based secreted protein database. Nucleic Acids Res 2005; 33: D169–D173.

    CAS  PubMed  Google Scholar 

  59. Lakkaraju AK, Thankappan R, Mary C, Garrison JL, Taunton J, Strub K . Efficient secretion of small proteins in mammalian cells relies on Sec62-dependent posttranslational translocation. Mol Biol Cell 2012; 23: 2712–2722.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Ng DT, Brown JD, Walter P . Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 1996; 134: 269–278.

    CAS  PubMed  Google Scholar 

  61. Ill CR, Chiou HC . Gene therapy progress and prospects: recent progress in transgene and RNAi expression cassettes. Gene Therapy 2005; 12: 795–802.

    CAS  PubMed  Google Scholar 

  62. Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ et al. Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS One 2010; 5: e10611.

    PubMed  PubMed Central  Google Scholar 

  63. Wen B, Deng Y, Guan J, Yan W, Wang Y, Tan W et al. Signal peptide replacements enhance expression and secretion of hepatitis C virus envelope glycoproteins. Acta Biochim Biophys Sin (Shanghai) 2011; 43: 96–102.

    CAS  Google Scholar 

  64. Munoz-Barroso I, Durell S, Sakaguchi K, Appella E, Blumenthal R . Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol 1998; 140: 315–323.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. de Rosny E, Vassell R, Wingfield PT, Wild CT, Weiss CD . Peptides corresponding to the heptad repeat motifs in the transmembrane protein (gp41) of human immunodeficiency virus type 1 elicit antibodies to receptor-activated conformations of the envelope glycoprotein. J Virol 2001; 75: 8859–8863.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Brighty DW, Rosenberg M, Chen IS, Ivey-Hoyle M . Envelope proteins from clinical isolates of human immunodeficiency virus type 1 that are refractory to neutralization by soluble CD4 possess high affinity for the CD4 receptor. Proc Natl Acad Sci USA 1991; 88: 7802–7805.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Traunecker A, Luke W, Karjalainen K . Soluble CD4 molecules neutralize human immunodeficiency virus type 1. Nature 1988; 331: 84–86.

    CAS  PubMed  Google Scholar 

  68. Kilby JM, Lalezari JP, Eron JJ, Carlson M, Cohen C, Arduino RC et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 2002; 18: 685–693.

    CAS  PubMed  Google Scholar 

  69. De Groot AS, Martin W . Reducing risk, improving outcomes: bioengineering less immunogenic protein therapeutics. Clin Immunol 2009; 131: 189–201.

    CAS  PubMed  Google Scholar 

  70. Swiech K, Picanco-Castro V, Covas DT . Human cells: new platform for recombinant therapeutic protein production. Protein Expr Purif 2012; 84: 147–153.

    CAS  PubMed  Google Scholar 

  71. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A et al. RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2010; 2: 36ra43.

    PubMed  PubMed Central  Google Scholar 

  72. Alberts BJA, Lewis J et al. Blood cells. Molecular Biology of the Cell 4th edn New York: Garland Science, 2002, Table 22-1 Available from http://www.ncbi.nlm.nih.gov/books/NBK26919/table/A4143/.

    Google Scholar 

  73. Baek SC, Lin Q, Robbins PB, Fan H, Khavari PA . Sustainable systemic delivery via a single injection of lentivirus into human skin tissue. Hum Gene Ther 2001; 12: 1551–1558.

    CAS  PubMed  Google Scholar 

  74. Lu Y, Choi YK, Campbell-Thompson M, Li C, Tang Q, Crawford JM et al. Therapeutic level of functional human alpha 1 antitrypsin (hAAT) secreted from murine muscle transduced by adeno-associated virus (rAAV1) vector. J Gene Med 2006; 8: 730–735.

    CAS  PubMed  Google Scholar 

  75. Jeon HJ, Oh TK, Kim OH, Kim ST . Delivery of factor VIII gene into skeletal muscle cells using lentiviral vector. Yonsei Med J 2010; 51: 52–57.

    CAS  PubMed  Google Scholar 

  76. Moulay G, Masurier C, Bigey P, Scherman D, Kichler A . Soluble TNF-alpha receptor secretion from healthy or dystrophic mice after AAV6-mediated muscle gene transfer. Gene Therapy 2010; 17: 1400–1410.

    CAS  PubMed  Google Scholar 

  77. Schooley RT, Merigan TC, Gaut P, Hirsch MS, Holodniy M, Flynn T et al. Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. A phase I-II escalating dosage trial. Ann Intern Med 1990; 112: 247–253.

    CAS  PubMed  Google Scholar 

  78. Schacker T, Coombs RW, Collier AC, Zeh JE, Fox I, Alam J et al. The effects of high-dose recombinant soluble CD4 on human immunodeficiency virus type 1 viremia. J Infect Dis 1994; 169: 37–40.

    CAS  PubMed  Google Scholar 

  79. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP . Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 1987; 7: 379–387.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Vodicka MA, Goh WC, Wu LI, Rogel ME, Bartz SR, Schweickart VL et al. Indicator cell lines for detection of primary strains of human and simian immunodeficiency viruses. Virology 1997; 233: 193–198.

    CAS  PubMed  Google Scholar 

  81. Derdeyn CA, Decker JM, Bibollet-Ruche F, Mokili JL, Muldoon M, Denham SA et al. Envelope-constrained neutralization-sensitive HIV-1 after heterosexual transmission. Science 2004; 303: 2019–2022.

    CAS  PubMed  Google Scholar 

  82. Williamson C, Morris L, Maughan MF, Ping LH, Dryga SA, Thomas R et al. Characterization and selection of HIV-1 subtype C isolates for use in vaccine development. AIDS Res Hum Retroviruses 2003; 19: 133–144.

    CAS  PubMed  Google Scholar 

  83. Li M, Gao F, Mascola JR, Stamatatos L, Polonis VR, Koutsoukos M et al. Human immunodeficiency virus type 1 env clones from acute and early subtype B infections for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 2005; 79: 10108–10125.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X et al. Antibody neutralization and escape by HIV-1. Nature 2003; 422: 307–312.

    CAS  PubMed  Google Scholar 

  85. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46: 1896–1905.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Tiscornia G, Singer O, Verma IM . Production and purification of lentiviral vectors. Nat Protoc 2006; 1: 241–245.

    CAS  PubMed  Google Scholar 

  87. Kutner RH, Zhang XY, Reiser J . Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat Protoc 2009; 4: 495–505.

    CAS  PubMed  Google Scholar 

  88. Schneider CA, Rasband WS, Eliceiri KW . NIH Image to ImageJ: 25 years of image analysis. Nat Methods 2012; 9: 671–675.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to several colleagues for generously providing us with various reagents: Dr Branch for pJRFL-env and HIVIIIB; Dr Moffat for pLJM2, psPAX2, pMD2.G and 293T cells; and Dr Ostrowski for PBMCs and HIVNL4-3. We also thank Waqar Ahmad and Jimmy Chen for their help with some of the experiments. This research is funded by Canadian Institutes for Health Research (Grant number HOP-93433).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Joshi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falkenhagen, A., Ameli, M., Asad, S. et al. A novel gene therapy strategy using secreted multifunctional anti-HIV proteins to confer protection to gene-modified and unmodified target cells. Gene Ther 21, 175–187 (2014). https://doi.org/10.1038/gt.2013.70

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.70

Keywords

This article is cited by

Search

Quick links