Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

In vivo reprogramming in inflammatory bowel disease

Abstract

The direct reprogramming of somatic cells has immense implications in various areas of medicine. Although remarkable progress has been made in developing novel reprogramming methods, the efficiency and fidelity of reprogramming still need to be improved. Inflammatory bowel disease (IBD) involves chronic inflammatory diseases of the gastrointestinal tract with a complex etiology caused by various genetic, immunological and environmental factors. Recently, the role of stem cells has been proposed in pathogenesis and therapy of IBD. However, the efficiency and the safety of the stem cell treatments depend on the origin of the stem cell and the administration method. We hypothesize that the reprogramming of the intestinal cells into a pluripotent state is of huge importance for IBD therapy and prevention. The vectors carrying reprogramming genes encoding pluripotency factors can be transferred to the damaged tissue, in this case the intestine, by means of invasive bacterial vectors able to colonize colon mucosa. Reconstruction of tissues in vivo might avoid problems encountered in tissue rebuilding in vitro because of lack of appropriate scaffolds and microenvironments. Herein we present a review of recent literature and a perspective of in vivo reprogramming in IBD using bacterial vectors and analyze the rationale for such approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Takahashi K, Yamanaka S . Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663–676.

    Article  CAS  PubMed  Google Scholar 

  2. Meissner A, Wernig M, Jaenisch R . Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25: 1177–1181.

    CAS  PubMed  Google Scholar 

  3. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 2008; 321: 699–702.

    CAS  PubMed  Google Scholar 

  4. Eminli S, Utikal J, Arnold K, Jaenisch R, Hochedlinger K . Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 2008; 26: 2467–2474.

    CAS  PubMed  Google Scholar 

  5. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008; 133: 250–264.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 2008; 26: 1276–1284.

    CAS  PubMed  Google Scholar 

  7. Seki T, Yuasa S, Oda M, Egashira T, Yae K, Kusumoto D et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating T cells. Cell Stem Cell 2010; 7: 11–14.

    CAS  PubMed  Google Scholar 

  8. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    CAS  PubMed  Google Scholar 

  9. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318: 1917–1920.

    CAS  PubMed  Google Scholar 

  10. Lai MI, Wendy-Yeo WY, Ramasamy R, Nordin N, Rosli R, Veerakumarasivam A et al. Advancements in reprogramming strategies for the generation of induced pluripotent stem cells. J Assist Reprod Genet 2011; 28: 291–301.

    PubMed Central  PubMed  Google Scholar 

  11. Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26: 101–106.

    CAS  PubMed  Google Scholar 

  12. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 2008; 26: 1269–1275.

    CAS  PubMed  Google Scholar 

  13. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H et al. Direct reprogramming of human neural stem cells by OCT4. Nature 2009; 461: 649–643.

    CAS  PubMed  Google Scholar 

  14. Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N et al. Emerging methods for preparing iPS cells. Jpn J Clin Oncol 2012; 42: 773–779.

    PubMed  Google Scholar 

  15. Leonardo TR, Schultheisz HL, Loring JF, Laurent LC . The functions of microRNAs in pluripotency and reprogramming. Nat Cell Biol 2012; 14: 1114–1121.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Blelloch R, Venere M, Yen J, Ramalho-Santos M . Generation of induced pluripotent stem cells in the absence of drug selection. Cell Stem Cell 2007; 1: 245–247.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008; 2: 151–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K . A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 2008; 3: 340–345.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Maherali N, Hochedlinger K . Guidelines and techniques for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 3: 595–605.

    CAS  PubMed  Google Scholar 

  20. Riggs JW, Barrilleaux BL, Varlakhanova N, Bush KM, Chan V, Knoepfler PS . Induced pluripotency and oncogenic transformation are related processes. Stem Cells Dev 2013; 22: 37–50.

    CAS  PubMed  Google Scholar 

  21. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 2009; 4: 472–476.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 2009; 4: 381–384.

    CAS  PubMed  Google Scholar 

  23. Okita K, Hong H, Takahashi K, Yamanaka S . Generation of mouse-induced pluripotent stem cells with plasmid vectors. Nat Protoc 2010; 5: 418–428.

    CAS  PubMed  Google Scholar 

  24. Gonzalez F, Barragan Monasterio M, Tiscornia G, Montserrat Pulido N, Vassena R, Batlle Morera L et al. Generation of mouse-induced pluripotent stem cells by transient expression of a single nonviral polycistronic vector. Proc Natl Acad Sci USA 2009; 106: 8918–8922.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li W, Wei W, Zhu S, Zhu J, Shi Y, Lin T et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell 2009; 4: 16–19.

    PubMed  Google Scholar 

  26. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S . Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 2008; 3: 568–574.

    CAS  PubMed  Google Scholar 

  27. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 2008; 26: 795–797.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Feng B, Ng JH, Heng JC, Ng HH . Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 2009; 4: 301–312.

    CAS  PubMed  Google Scholar 

  29. Kang L, Wang J, Zhang Y, Kou Z, Gao S . iPS cells can support full-term development of tetraploid blastocyst-complemented embryos. Cell Stem Cell 2009; 5: 135–138.

    CAS  PubMed  Google Scholar 

  30. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T et al. iPS cells produce viable mice through tetraploid complementation. Nature 2009; 461: 86–90.

    CAS  PubMed  Google Scholar 

  31. Boland MJ, Hazen JL, Nazor KL, Rodriguez AR, Gifford W, Martin G et al. Adult mice generated from induced pluripotent stem cells. Nature 2009; 461: 91–94.

    CAS  PubMed  Google Scholar 

  32. Zhao XY, Li W, Lv Z, Liu L, Tong M, Hai T et al. Viable fertile mice generated from fully pluripotent iPS cells derived from adult somatic cells. Stem Cell Rev 2010; 6: 390–397.

    Google Scholar 

  33. Okita K, Ichisaka T, Yamanaka S . Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.

    CAS  PubMed  Google Scholar 

  34. Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedlinger K et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 2007; 448: 318–324.

    CAS  PubMed  Google Scholar 

  35. Takahashi K, Okita K, Nakagawa M, Yamanaka S . Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc 2007; 2: 3081–3089.

    CAS  PubMed  Google Scholar 

  36. Marti M, Mulero L, Pardo C, Morera C, Carrio M, Laricchia-Robbio L et al. Characterization of pluripotent stem cells. Nat Protoc 2013; 8: 223–253.

    CAS  PubMed  Google Scholar 

  37. Vitale AM, Wolvetang E, Mackay-Sim A . Induced pluripotent stem cells: a new technology to study human diseases. Int J Biochem Cell Biol 2011; 43: 843–846.

    CAS  PubMed  Google Scholar 

  38. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A et al. Disease-specific induced pluripotent stem cells. Cell 2008; 134: 877–886.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Bellin M, Marchetto MC, Gage FH, Mummery CL . Induced pluripotent stem cells: the new patient? Nat Rev Mol Cell Biol 2012; 13: 713–726.

    PubMed  Google Scholar 

  40. Gao A, Peng Y, Deng Y, Qing H . Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience 2013; 228: 47–59.

    CAS  PubMed  Google Scholar 

  41. Anchan RM, Quaas P, Gerami-Naini B, Bartake H, Griffin A, Zhou Y et al. Amniocytes can serve a dual function as a source of iPS cells and feeder layers. Hum Mol Genet 2011; 20: 962–974.

    CAS  PubMed  Google Scholar 

  42. Wong GK, Chiu AT . Gene therapy, gene targeting and induced pluripotent stem cells: applications in monogenic disease treatment. Biotechnol Adv 2010; 28: 715–724.

    CAS  PubMed  Google Scholar 

  43. Zwi-Dantsis L, Gepstein L . Induced pluripotent stem cells for cardiac repair. Cell Mol Life Sci 2012; 69: 3285–3299.

    CAS  PubMed  Google Scholar 

  44. Zhu Y, Wan S, Zhan RY . Inducible pluripotent stem cells for the treatment of ischemic stroke: current status and problems. Rev Neurosci 2012; 23: 393–402.

    PubMed  Google Scholar 

  45. Ito D, Okano H, Suzuki N . Accelerating progress in induced pluripotent stem cell research for neurological diseases. Ann Neurol 2012; 72: 167–174.

    CAS  PubMed  Google Scholar 

  46. Kao DI, Chen S . Pluripotent stem cell-derived pancreatic beta-cells: potential for regenerative medicine in diabetes. Regen Med 2012; 7: 583–593.

    CAS  PubMed  Google Scholar 

  47. Oyama Y, Craig RM, Traynor AE, Quigley K, Statkute L, Halverson A et al. Autologous hematopoietic stem cell transplantation in patients with refractory Crohn’s disease. Gastroenterology 2005; 128: 552–563.

    PubMed  Google Scholar 

  48. Burt RK, Traynor A, Oyama Y, Craig R . High-dose immune suppression and autologous hematopoietic stem cell transplantation in refractory Crohn disease. Blood 2003; 101: 2064–2066.

    CAS  PubMed  Google Scholar 

  49. Gonzalez MA, Gonzalez-Rey E, Rico L, Buscher D, Delgado M . Adipose-derived mesenchymal stem cells alleviate experimental colitis by inhibiting inflammatory and autoimmune responses. Gastroenterology 2009; 136: 978–989.

    CAS  PubMed  Google Scholar 

  50. Liang L, Dong C, Chen X, Fang Z, Xu J, Liu M et al. Human umbilical cord mesenchymal stem cells ameliorate mice trinitrobenzene sulfonic acid (TNBS)-induced colitis. Cell Transplant 2011; 20: 1395–1408.

    PubMed  Google Scholar 

  51. Zhou Q, Price DD, Dreher KL, Pronold B, Callam CS, Sharma J et al. Localized colonic stem cell transplantation enhances tissue regeneration in murine colitis. J Cell Mol Med 2012; 16: 1900–1915.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Logan RF . Inflammatory bowel disease incidence: up, down or unchanged? Gut 1998; 42: 309–311.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Russel MG . Changes in the incidence of inflammatory bowel disease: what does it mean? Eur J Intern Med 2000; 11: 191–196.

    CAS  PubMed  Google Scholar 

  54. Gramlich T, Petras RE . Pathology of inflammatory bowel disease. Semin Pediatr Surg 2007; 16: 154–163.

    PubMed  Google Scholar 

  55. Iskandar HN, Ciorba MA . Biomarkers in inflammatory bowel disease: current practices and recent advances. Transl Res 2012; 159: 313–325.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Wirtz S, Neufert C, Weigmann B, Neurath MF . Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007; 2: 541–546.

    CAS  PubMed  Google Scholar 

  57. Ogawa A, Andoh A, Araki Y, Bamba T, Fujiyama Y . Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 2004; 110: 55–62.

    CAS  PubMed  Google Scholar 

  58. Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO . Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994; 107: 1643–1652.

    CAS  PubMed  Google Scholar 

  59. Podolsky DK . The future of IBD treatment. J Gastroenterol 2003; 38 (Suppl 15): 63–66.

    CAS  PubMed  Google Scholar 

  60. Triantafillidis JK, Merikas E, Georgopoulos F . Current and emerging drugs for the treatment of inflammatory bowel disease. Drug Des Devel Ther 2011; 5: 185–210.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Blonski W, Buchner AM, Lichtenstein GR . Inflammatory bowel disease therapy: current state-of-the-art. Curr Opin Gastroenterol 2011; 27: 346–357.

    CAS  PubMed  Google Scholar 

  62. Buchanan J, Wordsworth S, Ahmad T, Perrin A, Vermeire S, Sans M et al. Managing the long term care of inflammatory bowel disease patients: The cost to European health care providers. J Crohns Colitis 2011; 5: 301–316.

    PubMed  Google Scholar 

  63. Thompson-Chagoyan OC, Maldonado J, Gil A . Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 2005; 24: 339–352.

    CAS  PubMed  Google Scholar 

  64. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N et al. Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 2005; 140: 417–426.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289: 1352–1355.

    CAS  PubMed  Google Scholar 

  66. Bibiloni R, Fedorak RN, Tannock GW, Madsen KL, Gionchetti P, Campieri M et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005; 100: 1539–1546.

    PubMed  Google Scholar 

  67. Hoentjen F, Welling GW, Harmsen HJ, Zhang X, Snart J, Tannock GW et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm Bowel Dis 2005; 11: 977–985.

    PubMed  Google Scholar 

  68. Kanauchi O, Suga T, Tochihara M, Hibi T, Naganuma M, Homma T et al. Treatment of ulcerative colitis by feeding with germinated barley foodstuff: first report of a multicenter open control trial. J Gastroenterol 2002; 37 (Suppl 14): 67–72.

    CAS  PubMed  Google Scholar 

  69. Palffy R, Behuliak M, Gardlik R, Jani P, Kadasi L, Turna J et al. Oral in vivo bactofection in dextran sulfate sodium treated female Wistar rats. Folia Biol 2010; 58: 171–176.

    CAS  Google Scholar 

  70. Palffy R, Gardlik R, Behuliak M, Jani P, Balakova D, Kadasi L et al. Salmonella-mediated gene therapy in experimental colitis in mice. Exp Biol Med 2011; 236: 177–183.

    CAS  Google Scholar 

  71. Khalil PN, Weiler V, Nelson PJ, Khalil MN, Moosmann S, Mutschler WE et al. Nonmyeloablative stem cell therapy enhances microcirculation and tissue regeneration in murine inflammatory bowel disease. Gastroenterology 2007; 132: 944–954.

    PubMed  Google Scholar 

  72. Duijvestein M, van den Brink GR, Hommes DW . Stem cells as potential novel therapeutic strategy for inflammatory bowel disease. J Crohns Colitis 2008; 2: 99–106.

    CAS  PubMed  Google Scholar 

  73. Nemoto Y, Kanai T, Takahara M, Oshima S, Nakamura T, Okamoto R et al. Bone marrow-mesenchymal stem cells are a major source of interleukin-7 and sustain colitis by forming the niche for colitogenic CD4 memory T cells. Gut 2012; 62: 1142–1152.

    PubMed  Google Scholar 

  74. Guo Y, Lu N, Bai A . Treatment of inflammatory bowel disease with neural stem cells expressing choline acetyltransferase. Med Hypotheses 2012; 79: 627–629.

    CAS  PubMed  Google Scholar 

  75. Yin JA, Jowitt SN . Resolution of immune-mediated diseases following allogeneic bone marrow transplantation for leukaemia. Bone Marrow Transplant 1992; 9: 31–33.

    CAS  PubMed  Google Scholar 

  76. Tyndall A, Passweg J, Gratwohl A . Haemopoietic stem cell transplantation in the treatment of severe autoimmune diseases 2000. Ann Rheum Dis 2001; 60: 702–707.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Filareto A, Parker S, Darabi R, Borges L, Iacovino M, Schaaf T et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun 2013; 4: 1549.

    PubMed  Google Scholar 

  78. Yang J, Lam DH, Goh SS, Lee EX, Zhao Y, Tay FC et al. Tumor tropism of intravenously injected human-induced pluripotent stem cell-derived neural stem cells and their gene therapy application in a metastatic breast cancer model. Stem Cells 2012; 30: 1021–1029.

    CAS  PubMed  Google Scholar 

  79. Tedesco FS, Gerli MF, Perani L, Benedetti S, Ungaro F, Cassano M et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med 2012; 4: 140ra189.

    Google Scholar 

  80. Buccini S, Haider KH, Ahmed RP, Jiang S, Ashraf M . Cardiac progenitors derived from reprogrammed mesenchymal stem cells contribute to angiomyogenic repair of the infarcted heart. Basic Res Cardiol 2012; 107: 301.

    PubMed Central  PubMed  Google Scholar 

  81. How CK, Chien Y, Yang KY, Shih HC, Juan CC, Yang YP et al. Induced pluripotent stem cells mediate the release of interferon gamma-induced protein 10 and alleviate bleomycin-induced lung inflammation and fibrosis. Shock 2013; 39: 261–270.

    CAS  PubMed  Google Scholar 

  82. Gomi M, Takagi Y, Morizane A, Doi D, Nishimura M, Miyamoto S et al. Functional recovery of the murine brain ischemia model using human induced pluripotent stem cell-derived telencephalic progenitors. Brain Res 2012; 1459: 52–60.

    CAS  PubMed  Google Scholar 

  83. Wang A, Sander M . Generating cells of the gastrointestinal system: current approaches and applications for the differentiation of human pluripotent stem cells. J Mol Med (Berl) 2012; 90: 763–771.

    CAS  Google Scholar 

  84. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011; 470: 105–109.

    PubMed  Google Scholar 

  85. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 2009; 41: 968–976.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009; 27: 743–745.

    CAS  PubMed  Google Scholar 

  87. Hanley J, Rastegarlari G, Nathwani AC . An introduction to induced pluripotent stem cells. Br J Haematol 2010; 151: 16–24.

    CAS  PubMed  Google Scholar 

  88. Gardlik R . Inducing pluripotency using in vivo gene therapy. Med Hypotheses 2012; 79: 197–201.

    CAS  PubMed  Google Scholar 

  89. Sheng X, Reppel M, Nguemo F, Mohammad FI, Kuzmenkin A, Hescheler J et al. Human pluripotent stem cell-derived cardiomyocytes: response to TTX and lidocain reveals strong cell to cell variability. PLoS One 2012; 7: e45963.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Giuliani M, Oudrhiri N, Noman ZM, Vernochet A, Chouaib S, Azzarone B et al. Human mesenchymal stem cells derived from induced pluripotent stem cells down-regulate NK-cell cytolytic machinery. Blood 2011; 118: 3254–3262.

    CAS  PubMed  Google Scholar 

  91. Yamada S, Nelson TJ, Behfar A, Crespo-Diaz RJ, Fraidenraich D, Terzic A . Stem cell transplant into preimplantation embryo yields myocardial infarction-resistant adult phenotype. Stem Cells 2009; 27: 1697–1705.

    PubMed Central  PubMed  Google Scholar 

  92. Palffy R, Gardlik R, Hodosy J, Behuliak M, Resko P, Radvansky J et al. Bacteria in gene therapy: bactofection versus alternative gene therapy. Gene Therapy 2006; 13: 101–105.

    CAS  PubMed  Google Scholar 

  93. Gardlik R, Fruehauf JH . Bacterial vectors and delivery systems in cancer therapy. IDrugs 2010; 13: 701–706.

    CAS  PubMed  Google Scholar 

  94. Foligne B, Dessein R, Marceau M, Poiret S, Chamaillard M, Pot B et al. Prevention and treatment of colitis with Lactococcus lactis secreting the immunomodulatory Yersinia LcrV protein. Gastroenterology 2007; 133: 862–874.

    CAS  PubMed  Google Scholar 

  95. Vandenbroucke K, De Haard H, Beirnaert E, Dreier T, Lauwereys M, Huyck L et al. Orally administered L. lactis secreting an anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal Immunol 2010; 3: 49–56.

    CAS  PubMed  Google Scholar 

  96. Gardlik R, Bartonova A, Celec P . Therapeutic DNA vaccination and RNA interference in inflammatory bowel disease. Int J Mol Med 2013; 32: 492–496.

    CAS  PubMed  Google Scholar 

  97. Hamady ZZ, Scott N, Farrar MD, Lodge JP, Holland KT, Whitehead T et al. Xylan-regulated delivery of human keratinocyte growth factor-2 to the inflamed colon by the human anaerobic commensal bacterium Bacteroides ovatus. Gut 2010; 59: 461–469.

    CAS  PubMed  Google Scholar 

  98. Ohta K, Kawano R, Ito N . Lactic acid bacteria convert human fibroblasts to multipotent cells. PLoS One 2012; 7: e51866.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Finkbeiner SR, Spence JR . A gutsy task: generating intestinal tissue from human pluripotent stem cells. Dig Dis Sci 2013; 58: 1176–1184.

    PubMed Central  PubMed  Google Scholar 

  100. Fujii Y, Yoshihashi K, Suzuki H, Tsutsumi S, Mutoh H, Maeda S et al. CDX1 confers intestinal phenotype on gastric epithelial cells via induction of stemness-associated reprogramming factors SALL4 and KLF5. Proc Natl Acad Sci USA 2012; 109: 20584–20589.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Grant VEGA 1/0206/12 of the Ministry of Education, Science, Research and Sport of the Slovak Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Gardlik.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagnerova, A., Gardlik, R. In vivo reprogramming in inflammatory bowel disease. Gene Ther 20, 1111–1118 (2013). https://doi.org/10.1038/gt.2013.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.43

Keywords

Search

Quick links