Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene

Subjects

Abstract

Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8–T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Sekhon LH, Fehlings MG . Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine 2001; 26: S2–S12.

    Article  CAS  Google Scholar 

  2. Kuhlengel KR, Bunge MB, Bunge RP, Burton H . Implantation of cultured sensory neurons and Schwann cells into lesioned neonatal rat spinal cord. II. Implant characteristics and examination of corticospinal tract growth. J Comp Neurol 1990; 293: 74–91.

    Article  CAS  Google Scholar 

  3. Li Y, Raisman G . Schwann cells induce sprouting in motor and sensory axons in the adult rat spinal cord. J Neurosci 1994; 14: 4050–4063.

    Article  CAS  Google Scholar 

  4. Li Y, Field PM, Raisman G . Repair of adult rat corticospinal tract by transplants of olfactory ensheathing cells. Science 1997; 277: 2000–2002.

    Article  CAS  Google Scholar 

  5. Fernandez E, Pallini R, Lauretti L, Mercanti D, Serra A, Calissano P . Spinal cord transection in adult rats: Effects of local infusion of nerve growth factor on the corticospinal tract axons. Neurosurgery 1993; 33: 889–893.

    CAS  Google Scholar 

  6. McDonald JW, Liu X-Z, Qu Y, Liu S, Mickey SK, Turetsky D et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med 1999; 5: 1410–1412.

    Article  CAS  Google Scholar 

  7. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002; 69: 925–933.

    Article  CAS  Google Scholar 

  8. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci USA 2002; 99: 3024–3029.

    Article  CAS  Google Scholar 

  9. Moore MJ, Friedman JA, Lewellyn EB, Mantila SM, Krych AJ, Ameenuddin S et al. Multiple-channel scaffolds to promote spinal cord axon regeneration. Biomaterials 2006; 27: 419–429.

    Article  CAS  Google Scholar 

  10. Lee H, McKeon RJ, Bellamkonda RV . Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci USA 2010; 107: 3340–3345.

    Article  CAS  Google Scholar 

  11. De Laporte L, Yan AL, Shea LD . Local gene delivery from ECM-coated poly(lactide-co-glycolide) multiple channel bridges after spinal cord injury. Biomaterials 2009; 30: 2361–2368.

    Article  CAS  PubMed  Google Scholar 

  12. Afshari FT, Kwok JC, White L, Fawcett JW . Schwann cell migration is integrin-dependent and inhibited by astrocyte-produced aggrecan. Glia 2010; 58: 857–869.

    Google Scholar 

  13. Olson HE, Rooney GE, Gross L, Nesbitt JJ, Galvin KE, Knight A et al. Neural stem cell- and schwann cell-loaded biodegradable polymer scaffolds support axonal regeneration in the transected spinal cord. Tissue Eng Pt A 2009; 15: 1797–1805.

    Article  CAS  Google Scholar 

  14. De Laporte L, Yang Y, Zelivyanskaya ML, Cummings BJ, Anderson AJ, Shea LD . Plasmid releasing multiple channel bridges for transgene expression after spinal cord injury. Mol Ther 2009; 17: 318–326.

    Article  CAS  PubMed  Google Scholar 

  15. Straley KS, Foo CW, Heilshorn SC . Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotrauma 2010; 27: 1–19.

    Article  PubMed  Google Scholar 

  16. Chen BK, Knight AM, Madigan NN, Gross L, Dadsetan M, Nesbitt JJ et al. Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair. Biomaterials 2011; 32: 8077–8086.

    Article  CAS  PubMed  Google Scholar 

  17. Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME . Neurotrophin-3 enhances sprouting of corticospinal tract during development and after adult spinal cord lesion. Nature 1994; 367: 170–173.

    Article  CAS  Google Scholar 

  18. Huang WC, Kuo WC, Hsu SH, Cheng CH, Liu JC, Cheng H . Gait analysis of spinal cord injured rats after delivery of chondroitinase ABC and adult olfactory mucosa progenitor cell transplantation. Neurosci Lett 2010; 472: 79–84.

    Article  CAS  Google Scholar 

  19. Jefferson SC, Tester NJ, Howland DR, Chondroitinase ABC . promotes recovery of adaptive limb movements and enhances axonal growth caudal to a spinal hemisection. J Neurosci 2011; 31: 5710–5720.

    Article  CAS  PubMed  Google Scholar 

  20. Wang JM, Zeng YS, Wu JL, Li Y, Teng YD . Cograft of neural stem cells and schwann cells overexpressing TrkC and neurotrophin-3 respectively after rat spinal cord transection. Biomaterials 2011; 32: 7454–7468.

    Article  CAS  Google Scholar 

  21. Hofstetter CP, Holmstrom NA, Lilja JA, Schweinhardt P, Hao J, Spenger C et al. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat Neurosci 2005; 8: 346–353.

    Article  CAS  Google Scholar 

  22. Xu XM, Guénard V, Kleitman N, Aebischer P, Bunge MB . A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995; 134: 261–272.

    Article  CAS  Google Scholar 

  23. Sterne GD, Brown RA, Green CJ, Terenghi G . Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration. Eur J Neurosci 1997; 9: 1388–1396.

    Article  CAS  Google Scholar 

  24. Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M . Freeze-dried poly(D,L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 2004; 25: 1569–1582.

    Article  CAS  Google Scholar 

  25. Tsai EC, Dalton PD, Shoichet MS, Tator CH . Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 2006; 27: 519–533.

    Article  CAS  Google Scholar 

  26. Li GN, Hoffman-Kim D . Tissue-engineered platforms of axon guidance. Tissue Eng Pt B-Rev 2008; 14: 33–51.

    Article  CAS  Google Scholar 

  27. Longo FM, Xie Y, Massa SM . Neurotrophin Small molecule mimetics: candidate therapeutic agents for neurological disorders. Curr Med Chem 2005; 5: 29–41.

    CAS  Google Scholar 

  28. Peleshok J, Saragovi HU . Functional mimetics of neurotrophins and their receptors. Biochem Soc Trans 2006; 34: 612–617.

    Article  CAS  Google Scholar 

  29. Ramer MS, Bishop T, Dockery P, Mobarak MS, O'Leary D, Fraher JP et al. Neurotrophin-3-mediated regeneration and recovery of proprioception following dorsal rhizotomy. Mol Cell Neurosci 2002; 19: 239–249.

    Article  CAS  Google Scholar 

  30. Hari A, Djohar B, Skutella T, Montazeri S . Neurotrophins and extracellular matrix molecules modulate sensory axon outgrowth. Int J Dev Neurosci 2004; 22: 113–117.

    Article  CAS  Google Scholar 

  31. Naldini L . Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457–463.

    Article  CAS  PubMed  Google Scholar 

  32. Donnelly EM, Strappe PM, McGinley LM, Madigan NN, Geurts E, Rooney GE et al. Lentiviral vector-mediated knockdown of the neuroglycan 2 proteoglycan or expression of neurotrophin-3 promotes neurite outgrowth in a cell culture model of the glial scar. J Gene Med 2010; 12: 863–872.

    Article  CAS  Google Scholar 

  33. Tuinstra HM, Aviles MO, Shin S, Holland SJ, Zelivyanskaya ML, Fast AG et al. Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 2012; 33: 1618–1626.

    Article  CAS  Google Scholar 

  34. Camborieux L, Julia V, Pipy B, Swerts J-P . Respective roles of inflammation and axonal breakdown in the regulation of peripheral nerve hemopexin: an analysis in rats and in C57BL/Wlds mice. J Neuroimmunol 2000; 107: 29–41.

    Article  CAS  Google Scholar 

  35. Thomas CE, Ehrhardt A, Kay MA . Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003; 4: 346–358.

    Article  CAS  PubMed  Google Scholar 

  36. Lee J-Y, Giusti G, Friedrich PF, Archibald SJ, Kemnitzer JE, Patel J et al. The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. J Bone Joint Surg Am 2012; 94: 2084–2091.

    Article  Google Scholar 

  37. Newland B, Tai H, Zheng Y, Velasco D, Di Luca A, Howdle SM et al. A highly effective gene delivery vector--hyperbranched poly(2-(dimethylamino)ethyl methacrylate) from in situ deactivation enhanced ATRP. Chem Commun (Camb) 2010; 46: 4698–4700.

    Article  CAS  Google Scholar 

  38. Newland B, Zheng Y, Jin Y, Abu-Rub M, Cao H, Wang W et al. Single cyclized molecule versus single branched molecule: a simple and efficient 3D ‘knot’ polymer structure for nonviral gene delivery. J Am Chem Soc 2012; 134: 4782–4789.

    Article  CAS  Google Scholar 

  39. Yao L, De Ruiter GC, Wang H, Knight AM, Spinner RJ, Yaszemski MJ et al. Controlling dispersion of axonal regeneration using a multichannel collagen nerve conduit. Biomaterials 2010; 31: 5789–5797.

    Article  CAS  Google Scholar 

  40. Chen BK, Knight AM, Ruiter GCW De, Yaszemski MJ, Currier BL, Windebank AJ . Axon regeneration through scaffold into distal spinal cord after transection. J Neurotrauma 2009; 26: 1759–1771.

    Article  PubMed  Google Scholar 

  41. Itoh S, Takakuda K, Samejima H, Ohta T, Shinomiya K, Ichinose S . Synthetic collagen fibers coated with a synthetic peptide containing the YIGSR sequence of laminin to promote peripheral nerve regeneration in vivo. J Mater Sci Mater Med 1999; 10: 129–134.

    Article  CAS  Google Scholar 

  42. Yao L, Billiar KL, Windebank AJ, Pandit A . Multichanneled collagen conduits for peripheral nerve regeneration: design, fabrication, and characterization. Tissue Eng Pt C-Meth 2010; 16: 1585–1596.

    Article  CAS  Google Scholar 

  43. Daly WT, Yao L, Abu-rub MT, O'Connell C, Zeugolis DI, Windebank AJ et al. The effect of intraluminal contact mediated guidance signals on axonal mismatch during peripheral nerve repair. Biomaterials 2012; 33: 6660–6671.

    Article  CAS  Google Scholar 

  44. Macaya D, Spector M . Injectable hydrogel materials for spinal cord regeneration: a review. Biomed Mater 2012; 7: 012001.

    Article  CAS  Google Scholar 

  45. Chattopadhyay S, Shubayev VI . MMP-9 controls Schwann cell proliferation and phenotypic remodeling via IGF-1 and ErbB receptor-mediated activation of MEK/ERK pathway. Glia 2009; 57: 1316–1325.

    Article  PubMed  Google Scholar 

  46. Newland B, Dowd E, Pandit A . Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1: 556–576.

    Article  CAS  Google Scholar 

  47. Krych AJ, Rooney GE, Chen B, Schermerhorn TC, Ameenuddin S, Gross L et al. Relationship between scaffold channel diameter and number of regenerating axons in the transected rat spinal cord. Acta Biomater 2009; 5: 2551–2559.

    Article  CAS  PubMed  Google Scholar 

  48. Toba T, Nakamura T, Shimizu Y, Matsumoto K, Ohnishi K, Fukuda S et al. Regeneration of canine peroneal nerve with the use of a polyglycolic acid-collagen tube filled with laminin-soaked collagen sponge: a comparative study of collagen sponge and collagen fibers as filling materials for nerve conduits. J Biomed Mater Res 2001; 58: 622–630.

    Article  CAS  Google Scholar 

  49. Yoshii S, Oka M, Shima M, Taniguchi A, Taki Y, Akagi M . Restoration of function after spinal cord transection using a collagen bridge. J Biomed Mater Res A 2004; 70: 569–575.

    Article  Google Scholar 

  50. Yoshii S, Ito S, Shima M, Taniguchi A, Akagi M . Functional restoration of rabbit spinal cord using collagen-filament scaffold. J Tissue Eng Regen Med 2009; 3: 19–25.

    Article  CAS  Google Scholar 

  51. Daly W, Yao L, Zeugolis D, Windebank A, Pandit A . A biomaterials approach to peripheral nerve regeneration: bridging the peripheral nerve gap and enhancing functional recovery. J R Soc Interface 2012; 9: 202–221.

    Article  CAS  Google Scholar 

  52. Newland B, Moloney TC, Fontana G, Browne S, Dowd E, Pandit A . The neurotoxicity of gene vectors and its amelioration by packaging with collagen hollow spheres. Biomaterials 2012; 34: 2130–2141.

    Article  Google Scholar 

  53. Takahashi K, Schwarz E, Ljubetic C, Murray M, Tessler A, Saavedra RA . DNA plasmid that codes for human Bcl-2 gene preserves axotomized Clarke’s nucleus neurons and reduces atrophy after spinal cord hemisection in adult rats. J Comp Neurol 1999; 404: 159–171.

    Article  CAS  Google Scholar 

  54. Lu KW, Chen ZY, Jin DD, Hou TS, Cao L, Fu Q . Cationic liposome-mediated GDNF gene transfer after spinal cord injury. J Neurotrauma 2002; 19: 1081–1090.

    Article  Google Scholar 

  55. Shi L, Tang GP, Gao SJ, Ma YX, Liu BH, Li Y et al. Repeated intrathecal administration of plasmid DNA complexed with polyethylene glycol-grafted polyethylenimine led to prolonged transgene expression in the spinal cord. Gene Therapy 2003; 10: 1179–1188.

    Article  CAS  Google Scholar 

  56. Newland B, Abu-Rub M, Naughton M, Zheng Y, Pinoncely A, Collin E et al. GDNF gene delivery via a 2-(Dimethylamino)ethyl methacrylate based cyclized knot polymer for neuronal cell applications. ACS Chem Neurosci 2013; 4: 540–546.

    Article  CAS  PubMed  Google Scholar 

  57. Chen X, Wang XD, Chen G, Lin WW, Yao J, Gu XS . Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery 2006; 26: 111–115.

    Article  CAS  Google Scholar 

  58. Yang JX, Jiang ZL, Fitzgerald DC, Ma CG, Yu S, Li HM et al. Adult neural stem cells expressing IL-10 confer potent immunomodulation and remyelination in experimental autoimmune encephalitis. J Clin Invest 2009; 119: 3678–3691.

    Article  CAS  PubMed  Google Scholar 

  59. Zheng Y, Cao H, Newland B, Dong Y, Pandit A, Wang W . 3D single cyclized polymer chain structure from controlled polymerization of multi-vinyl monomers: beyond Flory-Stockmayer theory. J Am Chem Soc 2011; 133: 13130–13137.

    Article  CAS  Google Scholar 

  60. Saeed AO, Newland B, Pandit A, Wang W . The reverse of polymer degradation: in situ crosslinked gel formation through disulfide cleavage. Chem Commun (Camb) 2012; 48: 585–587.

    Article  CAS  Google Scholar 

  61. Holladay C, Keeney M, Newland B, Mathew A, Wang W, Pandit A . A reliable method for detecting complexed DNA in vitro. Nanoscale 2010; 2: 2718–2723.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Science Foundation Ireland Research Frontiers Program (Grant no.: 08/RFP/ENM1218) for providing financial support to this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Pandit.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, L., Daly, W., Newland, B. et al. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene. Gene Ther 20, 1149–1157 (2013). https://doi.org/10.1038/gt.2013.42

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.42

Keywords

This article is cited by

Search

Quick links