Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy

Abstract

Persistent activation of the transcription factor, signal transducer and activator of transcription 3 (Stat3) has been shown to mediate several oncogenic features in many types of cancers, including melanoma. In this study, we investigated whether lentiviral (LV) delivery of Stat3-targeting short hairpin RNA (shRNA; LV-shStat3) to K1735-C4 melanoma cells modulates antitumor immunity. Three shStat3 sequences, starting at the position 446, 830 and 1412, were cloned into a mir30 cassette. A shRNA with scrambled sequence served as a control. Transduction with LV-shStat3 resulted in downregulation of Stat3 in vitro. The latter coincided with low cell viability, a reduced expression of survivin and matrix metalloproteinase (MMP)-2. A single injection of LV-shStat3 in K1735-C4 tumors efficiently downregulated Stat3 in vivo and resulted in reduction of both vascular endothelial growth factor secretion and in myeloid-derived suppressor cell (MDSC) numbers. In contrast, we observed an increase in interleukin-6 and interferon-γ secretion, mature dendritic cells (DCs) and CD8+ T cells. Both DCs and CD8+ T cells displayed enhanced activity, whereas granulocytic MDSCs lost their suppressive capacity upon Stat3 downregulation. Importantly, a single injection of LV-shStat3 was sufficient to reduce tumor growth, hence prolong survival of tumor-bearing mice. These data demonstrate that Stat3 downregulation in melanoma reinvigorates existing antitumor immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Garbe C, Eigentler TK, Keilholz U, Hauschild A, Kirkwood JM . Systematic review of medical treatment in melanoma: current status and future prospects. Oncologist 2011; 16: 5–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wilgenhof S, Van Nuffel AM, Corthals J, Heirman C, Tuyaerts S, Benteyn D et al. Therapeutic vaccination with an autologous mRNA electroporated dendritic cell vaccine in patients with advanced melanoma. J Immunother 2011; 34: 448–456.

    Article  CAS  PubMed  Google Scholar 

  3. Wilgenhof S, Neyns B . Anti-CTLA-4 antibody-induced Guillain-Barre syndrome in a melanoma patient. Ann Oncol 2011; 22: 991–993.

    Article  CAS  PubMed  Google Scholar 

  4. Wilgenhof S, Pierret L, Corthals J, Van Nuffel AM, Heirman C, Roelandt T et al. Restoration of tumor equilibrium after immunotherapy for advanced melanoma: three illustrative cases. Melanoma Res 2011; 21: 152–159.

    Article  PubMed  Google Scholar 

  5. Moschos SJ, Edington HD, Land SR, Rao UN, Jukic D, Shipe-Spotloe J et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J Clin Oncol 2006; 24: 3164–3171.

    Article  CAS  PubMed  Google Scholar 

  6. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group Phase II Trial E1696. Clin Cancer Res 2009; 15: 1443–1451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dudley ME, Yang JC, Sherry R, Hughes MS, Royal R, Kammula U et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol 2008; 26: 5233–5239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davies BR, Logie A, McKay JS, Martin P, Steele S, Jenkins R et al. AZD6244 (ARRY-142886), a potent inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007; 6: 2209–2219.

    Article  CAS  PubMed  Google Scholar 

  9. Johnston PA, Grandis JR . STAT3 signaling: anticancer strategies and challenges. Mol Interv 2011; 11: 18–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wu ZS, Cheng XW, Wang XN, Song NJ . Prognostic significance of phosphorylated signal transducer and activator of transcription 3 and suppressor of cytokine signaling 3 expression in human cutaneous melanoma. Melanoma Res 2011; 21: 483–490.

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Edington HD, Rao UN, Jukic DM, Wang H, Shipe-Spotloe JM et al. STAT3 as a biomarker of progression in atypical nevi of patients with melanoma: dose-response effects of systemic IFN alpha therapy. J Invest Dermatol 2008; 128: 1997–2002.

    Article  CAS  PubMed  Google Scholar 

  12. Emeagi PU, Van Lint S, Goyvaerts C, Maenhout S, Cauwels A, McNeish IA et al. Proinflammatory characteristics of SMAC/DIABLO-induced cell death in antitumor therapy. Cancer Res 2012; 72: 1342–1352.

    Article  CAS  PubMed  Google Scholar 

  13. Yue P, Turkson J . Targeting STAT3 in cancer: how successful are we? Expert Opin Investig Drugs 2009; 18: 45–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang L, Gao L, Zhao L, Guo B, Ji K, Tian Y et al. Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica serovar typhimurium carrying plasmid-based small interfering RNAs. Cancer Res 2007; 67: 5859–5864.

    Article  CAS  PubMed  Google Scholar 

  15. Yang G, Huang C, Cao J, Huang KJ, Jiang T, Qiu ZJ . Lentivirus-mediated shRNA interference targeting STAT3 inhibits human pancreatic cancer cell invasion. World J Gastroenterol 2009; 15: 3757–3766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W et al. Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 1999; 59: 5059–5063.

    CAS  PubMed  Google Scholar 

  17. Niu G, Wright KL, Huang M, Song L, Haura E, Turkson J et al. Constitutive Stat3 activity up-regulates VEGF expression and tumor angiogenesis. Oncogene 2002; 21: 2000–2008.

    Article  CAS  PubMed  Google Scholar 

  18. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R et al. Stat3 activation regulates the expression of matrix metalloproteinase-2 and tumor invasion and metastasis. Oncogene 2004; 23: 3550–3560.

    Article  CAS  PubMed  Google Scholar 

  19. Kortylewski M, Swiderski P, Herrmann A, Wang L, Kowolik C, Kujawski M et al. In vivo delivery of siRNA to immune cells by conjugation to a TLR9 agonist enhances antitumor immune responses. Nat Biotechnol 2009; 27: 925–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alshamsan A, Hamdy S, Haddadi A, Samuel J, El-Kadi AO, Uludag H et al. STAT3 knockdown in B16 melanoma by siRNA lipopolyplexes induces bystander immune response in vitro and in vivo. Transl Oncol 2011; 4: 178–188.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Manuel ER, Blache CA, Paquette R, Kaltcheva TI, Ishizaki H, Ellenhorn JD et al. Enhancement of cancer vaccine therapy by systemic delivery of a tumor-targeting Salmonella-based STAT3 shRNA suppresses the growth of established melanoma tumors. Cancer Res 2011; 71: 4183–4191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pellinen R, Hakkarainen T, Wahlfors T, Tulimaki K, Ketola A, Tenhunen A et al. Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy. Int J Oncol 2004; 25: 1753–1762.

    CAS  PubMed  Google Scholar 

  23. Emeagi PU, Goyvaerts C, Maenhout S, Pen J, Thielemans K, Breckpot K . Lentiviral vectors: a versatile tool to fight cancer. Curr Mol Med 2012; 12: 602–625.

    Google Scholar 

  24. Brown BD, Sitia G, Annoni A, Hauben E, Sergi LS, Zingale A et al. In vivo administration of lentiviral vectors triggers a type I interferon response that restricts hepatocyte gene transfer and promotes vector clearance. Blood 2007; 109: 2797–2805.

    Article  CAS  PubMed  Google Scholar 

  25. Breckpot K, Escors D, Arce F, Lopes L, Karwacz K, Van Lint S et al. HIV-1 lentiviral vector immunogenicity is mediated by toll-like receptor 3 (TLR3) and TLR7. J Virol 2010; 84: 5627–5636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Breckpot K, Emeagi P, Dullaers M, Michiels A, Heirman C, Thielemans K . Activation of immature monocyte-derived dendritic cells after transduction with high doses of lentiviral vectors. Hum Gene Ther 2007; 18: 536–546.

    Article  CAS  PubMed  Google Scholar 

  27. Li W, Cha L . Predicting siRNA efficiency. Cell Mol Life Sci 2007; 64: 1785–1792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu H, Kortylewski M, Pardoll D . Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7: 41–51.

    Article  CAS  PubMed  Google Scholar 

  29. Alshamsan A, Hamdy S, Samuel J, El-Kadi AO, Lavasanifar A, Uludag H . The induction of tumor apoptosis in B16 melanoma following STAT3 siRNA delivery with a lipid-substituted polyethylenimine. Biomaterials 2010; 31: 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  30. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10: 48–54.

    Article  PubMed  Google Scholar 

  31. Kortylewski M, Yu H . Stat3 as a potential target for cancer immunotherapy. J Immunother 2007; 30: 131–139.

    Article  CAS  PubMed  Google Scholar 

  32. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998; 92: 4150–4166.

    CAS  PubMed  Google Scholar 

  33. Breckpot K, Dullaers M, Bonehill A, van Meirvenne S, Heirman C, de Greef C et al. Lentivirally transduced dendritic cells as a tool for cancer immunotherapy. J Gene Med 2003; 5: 654–667.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Angelo Willems and Julie Verdood for their assistance during the fluorescence-activated cell sorting analysis. We also thank Xavier Debaere, Elsy Vaeremans and Petra Roman for the plasmid DNA preparation. Funding was obtained from the Research foundation Flanders (FWO-V, Grant number #G023411N), the Agency of Innovation by Science and Technology, the Interuniversity Attraction Poles Program, the ‘Stichting tegen Kanker’ and Belgian State-Belgian Science Policy. KB is funded by the FWO-V. SM is funded by the IWT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Breckpot.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emeagi, P., Maenhout, S., Dang, N. et al. Downregulation of Stat3 in melanoma: reprogramming the immune microenvironment as an anticancer therapeutic strategy. Gene Ther 20, 1085–1092 (2013). https://doi.org/10.1038/gt.2013.35

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2013.35

Keywords

This article is cited by

Search

Quick links