Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles

Abstract

Non-viral vesicle composing of low-molecular weight polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide (CSOSA-g-PEI) was synthesized for gene delivery and therapy. The synthesized CSOSA-g-PEI had good ion-buffer capabilities and DNA-binding capacity, which could form positively charged nano-sized particles (100–150 nm) with plasmid DNA; in vitro gene transfection tests demonstrated that CSOSA-g-PEI presented much lower cytotoxicity and corresponding transfection efficiency in comparison with Lipofectamine 2000 in both human cancer cells (Hela and MCF-7). The gene transfection of CSOSA-g-PEI/pDNA could be further enhanced in the presence of serum or by adding arginine during incubation of CSOSA-g-PEI micelles with plasmid DNA. The biodistribution experiments demonstrated CSOSA-g-PEI conjugate highly localized in the tumor tissue and indicated a persistently increased accumulation. In vivo antitumor activity results showed that CSOSA-g-PEI/plasmid pigment epithelium-derived factor formulation could effectively suppress the tumor growth (above 60% tumor inhibition) without systematic toxicity against animal body after intravenous injection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Chae SY, Son S, Lee M, Jang MK, Nah JW . Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J Control Rel 2009; 109: 330–344.

    Article  Google Scholar 

  2. Kiang T, Wen J, Lim HW, Leong KW . The effect of the degree of chitosan deacetylation on the efficiency of gene transfection. Biomaterials 2004; 25: 5293–5301.

    Article  CAS  Google Scholar 

  3. Zauner W, Ogris M, Wagner E . Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv Drug Deliv Rev 1998; 30: 97–113.

    Article  CAS  Google Scholar 

  4. Kang HC, Kim S, Lee M, Bae YH . Polymeric gene carrier for insulin secreting cells: poly(L-lysine)-g-sulfonylurea for receptor mediated transfection. J Control Rel 2005; 105: 164–176.

    Article  CAS  Google Scholar 

  5. Orig M, Brunner S, Schuller S, Kircheis R, Wagner E . PEGylated DNA/transferring-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery. Gene Ther 1999; 6: 595–605.

    Article  Google Scholar 

  6. Kim TH, Kim SI, Akaikeb T, Cho CS . Synergistic effect of poly(ethylenimine) on the transfection efficiency of galactosylated chitosan/DNA complexes. J Control Rel 2005; 105: 354–366.

    Article  CAS  Google Scholar 

  7. Behr JP . Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjugate Chem 1994; 5: 382–389.

    Article  CAS  Google Scholar 

  8. Yu JH, Quan JS, Huang J, Wang CY, Su B, Nah JW et al. α, β-Poly(L-aspartate-graft-PEI): a pseudo-branched PEI as a gene carrier with low toxicity and high transfection efficiency. Acta Biomaterials 2009; 5: 2485–2494.

    Article  CAS  Google Scholar 

  9. Ma K, Hu MX, Qi Y, Qiu LY, Jin Y, Yu JM et al. Structure–transfection activity relationships with glucocorticoid–polyethylenimine conjugate nuclear gene delivery systems. Biomaterials 2009; 30: 3780–3789.

    Article  CAS  Google Scholar 

  10. Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 1995; 92: 7297–7303.

    Article  CAS  Google Scholar 

  11. Awson DW, Volpert OV, Gillis P, Crawford SE, Xu H, Benedict W et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999; 285: 245–248.

    Article  Google Scholar 

  12. Dass CR, Contreras KG, Dunstan DE, Choong P . Chitosan microparticles encapsulating PEDF plasmid demonstrate efficacy in an orthotopic metastatic model of osteosarcoma. Biomaterials 2007; 28: 3026–3033.

    Article  CAS  Google Scholar 

  13. Abe R, Shimizu T, Yamagishi S, Shibaki A, Amano S, Inagaki Y et al. Overexpression of pigment epithelium-derived factor decreases angiogenesis and inhibits the growth of human malignant melanoma cells in vivo. Am J Pathol 2004; 164: 1225–1232.

    Article  CAS  Google Scholar 

  14. You J, Hu FQ, Du YZ, Yuan H . Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating-target delivery of paclitaxel. Biomacromolecules 2007; 8: 2450–2456.

    Article  CAS  Google Scholar 

  15. Hu FQ, Zhao MD, Yuan H, You J, Du YZ, Zeng S . A novel chitosan oligosaccharide–stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int J Pharm 2006; 315: 158–166.

    Article  CAS  Google Scholar 

  16. Hu FQ, Liu LN, Du YZ, Yuan H . Synthesis and antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles. Biomaterials 2009; 30: 6955–6963.

    Article  CAS  Google Scholar 

  17. Suk JS, Suh J, Choy K, Lai SK, Fu J, Hanes J . Gene delivery to differentiated neurotypic cells with RGD and HIV Tat peptide functionalized polymeric nanoparticles. Biomaterials 2006; 27: 5143–5150.

    Article  CAS  Google Scholar 

  18. Liu G, Molas M, Grossmann GA, Pasumarthy M, Perales JC, Cooper MJ et al. Biological properties of poly-L-lysine–DNA complexes generated by cooperative binding of the polycation. J Biol Chem 2001; 276: 34379–34387.

    Article  CAS  Google Scholar 

  19. Sonawane ND, Szoka FC, Verkman AS . Chloride accumulation and swelling in endosomes enhances DNA transfer by polyamine–DNA polyplexes. J Biol Chem 2003; 278: 44826–44831.

    Article  CAS  Google Scholar 

  20. Petersen H, Fechner PM, Martin AL, Kunath K, Stolnik S, Roberts CJ et al. Polyethylenimine-graft-poly(ethylene glycol) copolymers: influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjugate Chem 2002; 13: 845–854.

    Article  CAS  Google Scholar 

  21. Mislick KA, Baldeschwieler JD . Evidence for the role of proteoglycans in cation-mediated gene transfer. Proc Natl Acad Sci USA 1996; 93: 12349–12354.

    Article  CAS  Google Scholar 

  22. Gao Y, Xu ZH, Chen SW, Gu WW, Chen LL, Li YP . Arginine-chitosan/DNA self-assemble nanoparticles for gene delivery: In vitro characteristics and transfection efficiency. Int J Pharm 2008; 359: 241–246.

    Article  CAS  Google Scholar 

  23. Yamanouchi D, Wu J, Lazar AN, Craig KK, Chu CC, Liu B . Biodegradable arginine-based poly(ester-amide)s as non-viral gene delivery reagents. Biomaterials 2008; 29: 3269–3277.

    Article  CAS  Google Scholar 

  24. Jiang HL, Kim YK, Arote R, Nah JW, Cho MH, Choi YJ et al. Chitosan-graft-polyethylenimine as a gene carrier. J Control Rel 2007; 117: 273–280.

    Article  CAS  Google Scholar 

  25. Yla’’-Herttuala S, Rissanen TT, Vajanto I, Hartikainen J . Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol 2007; 49: 1015–1026.

    Article  Google Scholar 

  26. Yamagishi S, Matsui T, Inoue H . Inhibition by advanced glycation end products (AGEs) of pigment epithelium-derived factor (PEDF) gene expression in microvascular endothelial cells. Drugs Exp. Clin Res 2005; 31: 227–232.

    CAS  Google Scholar 

  27. Witmer AN, Vrensen GF, Van-Noorden CJ, Schlingemann RO . Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res 2003; 22: 1–29.

    Article  CAS  Google Scholar 

  28. Yoshinobu F, Hideki I . Nanoparticles for cancer therapy and diagnosis. Adv Powder Technol 2006; 17: 1–28.

    Article  Google Scholar 

  29. Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW . Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Therapy 1999; 6: 643–650.

    Article  CAS  Google Scholar 

  30. Fenske DB, MacLachlan I, Cullis PR . Long-circulating vectors for the systemic delivery of genes. Curr Opin Mol Ther 2001; 3: 153–158.

    CAS  PubMed  Google Scholar 

  31. Vold IMN, Christensen BE . Periodate oxidation of chitosans with different chemical compositions. Carbohydr Res 2005; 340: 679–684.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Nature Science Foundation of China under Contract 30873174 and 81072583, and the Nature Science Foundation of Zhejiang province under Contract z207489 and Y2090336, and Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-Z Du.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, FQ., Chen, WW., Zhao, MD. et al. Effective antitumor gene therapy delivered by polyethylenimine-conjugated stearic acid-g-chitosan oligosaccharide micelles. Gene Ther 20, 597–606 (2013). https://doi.org/10.1038/gt.2012.72

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.72

Keywords

This article is cited by

Search

Quick links