Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy

Abstract

Duchenne muscular dystrophy (DMD) cardiomyopathy patients currently have no therapeutic options. We evaluated catheter-based transendocardial delivery of a recombinant adeno-associated virus (rAAV) expressing a small nuclear U7 RNA (U7smOPT) complementary to specific cis-acting splicing signals. Eliminating specific exons restores the open reading frame resulting in translation of truncated dystrophin protein. To test this approach in a clinically relevant DMD model, golden retriever muscular dystrophy (GRMD) dogs received serotype 6 rAAV-U7smOPT via the intracoronary or transendocardial route. Transendocardial injections were administered with an injection-tipped catheter and fluoroscopic guidance using X-ray fused with magnetic resonance imaging (XFM) roadmaps. Three months after treatment, tissues were analyzed for DNA, RNA, dystrophin protein, and histology. Whereas intracoronary delivery did not result in effective transduction, transendocardial injections, XFM guidance, enabled 30±10 non-overlapping injections per animal. Vector DNA was detectable in all samples tested and ranged from <1 to >3000 vector genome copies per cell. RNA analysis, western blot analysis, and immunohistology demonstrated extensive expression of skipped RNA and dystrophin protein in the treated myocardium. Left ventricular function remained unchanged over a 3-month follow-up. These results demonstrated that effective transendocardial delivery of rAAV-U7smOPT was achieved using XFM. This approach restores an open reading frame for dystrophin in affected dogs and has potential clinical utility.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. Drousiotou A, Ioannou P, Georgiou T, Mavrikiou E, Christopoulos G, Kyriakides T et al. Neonatal screening for Duchenne muscular dystrophy: a novel semiquantitative application of the bioluminescence test for creatine kinase in a pilot national program in Cyprus. Genet test 1998; 2: 55–60.

    CAS  Article  Google Scholar 

  2. Emery AE . Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul disord 1991; 1: 19–29.

    CAS  Article  Google Scholar 

  3. Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM et al. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 1987; 50: 509–517.

    CAS  Article  Google Scholar 

  4. Hoffman EP, Brown RH, Kunkel LM . Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 1987; 51: 919–928.

    CAS  Article  Google Scholar 

  5. Bushby K, Finkel R, Birnkrant DJ, Case LE, Clemens PR, Cripe L et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol 2010; 9: 77–93.

    Article  Google Scholar 

  6. Connuck DM, Sleeper LA, Colan SD, Cox GF, Towbin JA, Lowe AM et al. Characteristics and outcomes of cardiomyopathy in children with Duchenne or Becker muscular dystrophy: a comparative study from the Pediatric Cardiomyopathy Registry. Am Heart J 2008; 155: 998–1005.

    Article  Google Scholar 

  7. Nigro G, Comi LI, Politano L, Bain RJ . The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 1990; 26: 271–277.

    CAS  Article  Google Scholar 

  8. Cohn RD, van Erp C, Habashi JP, Soleimani AA, Klein EC, Lisi MT et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat med 2007; 13: 204–210.

    CAS  Article  Google Scholar 

  9. Duboc D, Meune C, Lerebours G, Devaux JY, Vaksmann G, Bécane HM et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005; 45: 855–857.

    CAS  Article  Google Scholar 

  10. De Angelis FG, Sthandier O, Berarducci B, Toso S, Galluzzi G, Ricci E et al. Chimeric snRNA molecules carrying antisense sequences against the splice junctions of exon 51 of the dystrophin pre-mRNA induce exon skipping and restoration of a dystrophin synthesis in Delta 48-50 DMD cells. Proc Natl Acad Sci USA 2002; 99: 9456–9461.

    Article  Google Scholar 

  11. Denti MA, Rosa A, D'Antona G, Sthandier O, De Angelis FG, Nicoletti C et al. Chimeric adeno-associated virus/antisense U1 small nuclear RNA effectively rescues dystrophin synthesis and muscle function by local treatment of mdx mice. Hum Gene Ther 2006; 17: 565–574.

    CAS  Article  Google Scholar 

  12. Goyenvalle A, Vulin A, Fougerousse F, Leturcq F, Kaplan JC, Garcia L et al. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping. Science 2004; 306: 1796–1799.

    CAS  Article  Google Scholar 

  13. Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM et al. The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 1988; 334: 154–156.

    CAS  Article  Google Scholar 

  14. Kornegay JN, Tuler SM, Miller DM, Levesque DC . Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 1988; 11: 1056–1064.

    CAS  Article  Google Scholar 

  15. Sharp NJ, Kornegay JN, Van Camp SD, Herbstreith MH, Secore SL, Kettle S et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 1992; 13: 115–121.

    CAS  Article  Google Scholar 

  16. Suter D, Tomasini R, Reber U, Gorman L, Kole R, Schümperli D et al. Double-target antisense U7 snRNAs promote efficient skipping of an aberrant exon in three human beta-thalassemic mutations. Hum Mol Genet 1999; 8: 2415–2423.

    CAS  Article  Google Scholar 

  17. Aartsma-Rus A, Kaman WE, Weij R, den Dunnen JT, van Ommen GJ, van Deutekom JC et al. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons. Mol Ther 2006; 14: 401–407.

    CAS  Article  Google Scholar 

  18. Dunckley MG, Manoharan M, Villiet P, Eperon IC, Dickson G . Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet 1998; 7: 1083–1090.

    CAS  Article  Google Scholar 

  19. Fletcher S, Ly T, Duff RM, Mc CHJ, Wilton SD . Cryptic splicing involving the splice site mutation in the canine model of Duchenne muscular dystrophy. Neuromuscul Disord 2001; 11: 239–243.

    CAS  Article  Google Scholar 

  20. Gorman L, Suter D, Emerick V, Schumperli D, Kole R . Stable alteration of pre-mRNA splicing patterns by modified U7 small nuclear RNAs. Proc Natl Acad Sci USA 1998; 95: 4929–4934.

    CAS  Article  Google Scholar 

  21. Wilton SD, Fletcher S . Modification of pre-mRNA processing: application to dystrophin expression. Curr Opin Mol Ther 2006; 8: 130–135.

    CAS  PubMed  Google Scholar 

  22. Popplewell LJ, Adkin C, Arechavala-Gomeza V, Aartsma-Rus A, de Winter CL, Wilton SD et al. Comparative analysis of antisense oligonucleotide sequences targeting exon 53 of the human DMD gene: implications for future clinical trials. Neuromuscul disord 2010; 20: 102–110.

    Article  Google Scholar 

  23. Cirak S, Arechavala-Gomeza V, Guglieri M, Feng L, Torelli S, Anthony K et al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, phase 2, dose-escalation study. Lancet 2011; 378: 595–605.

    CAS  Article  Google Scholar 

  24. Goemans NM, Tulinius M, van den Akker JT, Burm BE, Ekhart PF, Heuvelmans N et al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N Engl J Med 2011; 364: 1513–1522.

    CAS  Article  Google Scholar 

  25. van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M et al. Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 2007; 357: 2677–2686.

    CAS  Article  Google Scholar 

  26. Barbash IM, Leor J, Feinberg MS, Tessone A, Aboulafia-Etzion S, Orenstein A et al. Interventional magnetic resonance imaging for guiding gene and cell transfer in the heart. Heart 2004; 90: 87–91.

    CAS  Article  Google Scholar 

  27. Boekstegers P et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins. Gene Therapy 2000; 7: 232–240.

    CAS  Article  Google Scholar 

  28. Hayase M, Del Monte F, Kawase Y, Macneill BD, McGregor J, Yoneyama R et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol 2005; 288: H2995–H3000.

    CAS  Article  Google Scholar 

  29. Wright MJ, Wightman LM, Latchman DS, Marber MS . In vivo myocardial gene transfer: optimization and evaluation of intracoronary gene delivery in vivo. Gene Therapy 2001; 8: 1833–1839.

    CAS  Article  Google Scholar 

  30. Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM et al. Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Therapy 2008; 15: 1550–1557.

    CAS  Article  Google Scholar 

  31. Bish LT, Sleeper MM, Brainard B, Cole S, Russell N, Withnall E et al. Percutaneous transendocardial delivery of self-complementary adeno-associated virus 6 achieves global cardiac gene transfer in canines. Mol Ther 2008; 16: 1953–1959.

    CAS  Article  Google Scholar 

  32. Sanborn TA, Hackett NR, Lee LY, El-Sawy T, Blanco I, Tarazona N et al. Percutaneous endocardial transfer and expression of genes to the myocardium utilizing fluoroscopic guidance. Catheter Cardiovasc Interv 2001; 52: 260–266.

    CAS  Article  Google Scholar 

  33. Sylven C, Sarkar N, Insulander P, Kennebäck G, Blomberg P, Islam K et al. Catheter-based transendocardial myocardial gene transfer. J Intervent cardiol 2002; 15: 7–13.

    Article  Google Scholar 

  34. Bish LT, Sleeper MM, Forbes SC, Wang B, Reynolds C, Singletary GE et al. Long-term Restoration of cardiac dystrophin expression in golden retriever muscular dystrophy following rAAV6-mediated exon skipping. Mol Ther 2012; 20: 580–589.

    CAS  Article  Google Scholar 

  35. Kornegay JN, Bogan JR, Bogan DJ, Childers MK, Li J, Nghiem P et al. Canine models of Duchenne muscular dystrophy and their use in therapeutic strategies. Mamm Genome 2012; 23: 85–108.

    CAS  Article  Google Scholar 

  36. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ . Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv 2002; 55: 392–397.

    Article  Google Scholar 

  37. Levy HC, Bowman VD, Govindasamy L, McKenna R, Nash K, Warrington K et al. Heparin binding induces conformational changes in Adeno-associated virus serotype 2. J Struct Biol 2009; 165: 146–156.

    CAS  Article  Google Scholar 

  38. Shen WY, Lai CM, Lai YK, Zhang D, Zaknich T, Sutanto EN et al. Practical considerations of recombinant adeno-associated virus-mediated gene transfer for treatment of retinal degenerations. J Gene Med 2003; 5: 576–587.

    CAS  Article  Google Scholar 

  39. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 2002; 105: 539–542.

    Article  Google Scholar 

  40. Cecchini S, Virag T, Kotin RM . Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum gene ther 2011; 22: 1021–1030.

    CAS  Article  Google Scholar 

  41. Naimark WA, Lepore JJ, Klugherz BD, Wang Z, Guy TS, Osman H et al. Adenovirus-catheter compatibility increases gene expression after delivery to porcine myocardium. Hum gene ther 2003; 14: 161–166.

    CAS  Article  Google Scholar 

  42. Gutierrez LF, Silva R, Ozturk C, Sonmez M, Stine AM, Raval AN et al. Technology preview: X-ray fused with magnetic resonance during invasive cardiovascular procedures. Catheter Cardiovasc Interv 2007; 70: 773–782.

    Article  Google Scholar 

  43. Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Hum Mol Genet 2003; 12: 907–914.

    CAS  Article  Google Scholar 

  44. Cooper ST, Lo HP, North KN . Single section Western blot: improving the molecular diagnosis of the muscular dystrophies. Neurology 2003; 61: 93–97.

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the NHLBI Laboratory of Animal Medicine and Surgery technologists for assistance with animal experiments, and the veterinarians and technicians of the Division of Veterinary Research and Victor Wright for assistance with MRI scans. We appreciate the professional skills and advice of the Dr Christian Combs, NHLBI Light Microscopy Core, and Dr Xu-Zi Yu, NHLBI Pathology Core. Dr Victoria Joan Hoffman of Diagnostic & Research Services Branch, Division of Veterinary Resources, NIH, provided essential support and advice. Dr H Lee Sweeney provided helpful comments and discussion. We thank Boston Scientific for providing the injection catheters. Funding was provided by the National Heart, Lung, and Blood Institute, Division of Intramural Research, and the International Collaborative Effort (ICE) for Duchenne Muscular Dystrophy. The ICE consists of the Duchenne Parent Project France and the Association Monagasque Contre les Myopathies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Kotin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Barbash, I., Cecchini, S., Faranesh, A. et al. MRI roadmap-guided transendocardial delivery of exon-skipping recombinant adeno-associated virus restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Gene Ther 20, 274–282 (2013). https://doi.org/10.1038/gt.2012.38

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.38

Keywords

  • Duchenne muscular dystrophy
  • rAAV
  • exon-skipping
  • cardiomyopathy

Further reading

Search

Quick links