Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus)

Abstract

Coagulation factor X (FX)-binding ablated adenovirus type 5 (Ad5) vectors have been genetically engineered to ablate the interaction with FX, resulting in substantially reduced hepatocyte transduction following intravenous administration in rodents. Here, we quantify viral genomes and gene transfer mediated by Ad5 and FX-binding-ablated Ad5 vectors in non-human primates. Ad5 vectors accumulated in and mediated gene transfer predominantly to the liver, whereas FX-binding-ablated vectors primarily targeted the spleen but showed negligible liver gene transfer. In addition, we show that Ad5 binding to hepatocytes may be due to the presence of heparan sulfate proteoglycans (HSPGs) on the cell membrane. Therefore, the Ad5–FX–HSPG pathway mediating liver gene transfer in rodents is also the mechanism underlying Ad5 hepatocyte transduction in Microcebus murinus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Jaffe HA, Danel C, Longenecker G, Metzger M, Setoguchi Y, Rosenfeld MA et al. Adenovirus-mediated in vivo gene transfer and expression in normal rat liver. Nat Genet 1992; 1: 372–378.

    Article  CAS  Google Scholar 

  2. Tao N, Gao GP, Parr M, Johnston J, Baradet T, Wilson JM et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol Ther 2001; 3: 28–35.

    Article  CAS  Google Scholar 

  3. Schnell MA, Zhang Y, Tazelaar J, Gao GP, Yu QC, Qian R et al. Activation of innate immunity in nonhuman primates following intraportal administration of adenoviral vectors. Mol Ther 2001; 3: 708–722.

    Article  CAS  Google Scholar 

  4. Koizumi N, Kawabata K, Sakurai F, Watanabe Y, Hayakawa T, Mizuguchi H . Modified adenoviral vectors ablated for coxsackievirus-adenovirus receptor, alphav integrin, and heparan sulfate binding reduce in vivo tissue transduction and toxicity. Hum Gene Ther 2006; 17: 264–279.

    Article  CAS  Google Scholar 

  5. Mizuguchi H, Koizumi N, Hosono T, Ishii-Watabe A, Uchida E, Utoguchi N et al. Car—or alphav integrin-binding ablated adenovirus vectors, but not fiber-modified vectors containing RGD peptide, do not change the systemic gene transfer properties in mice. Gene Therapy 2002; 9: 769–776.

    Article  CAS  Google Scholar 

  6. Nicklin S, Wu E, Nemerow G, Baker A . The influence of adenovirus fiber structure and function on vector development for gene therapy. Mol Ther 2005; 12: 384–393.

    Article  CAS  Google Scholar 

  7. Alba R, Bradshaw AC, Parker AL, Bhella D, Waddington SN, Nicklin SA et al. Identification of coagulation factor (F)X binding sites on the adenovirus serotype 5 hexon: effect of mutagenesis on FX interactions and gene transfer. Blood 2009; 114: 965–971.

    Article  CAS  Google Scholar 

  8. Parker AL, Waddington SN, Nicol CG, Shayakhmetov DM, Buckley SM, Denby L et al. Multiple vitamin K-dependent coagulation zymogens promote adenovirus-mediated gene delivery to hepatocytes. Blood 2006; 108: 2554–2561.

    Article  CAS  Google Scholar 

  9. Shayakhmetov DM, Gaggar A, Ni S, Li ZY, Lieber A . Adenovirus binding to blood factors results in liver cell infection and hepatotoxicity. J Virol 2005; 79: 7478–7491.

    Article  CAS  Google Scholar 

  10. Vigant F, Descamps D, Jullienne B, Esselin S, Connault E, Opolon P et al. Substitution of hexon hypervariable region 5 of adenovirus serotype 5 abrogates blood factor binding and limits gene transfer to liver. Mol Ther 2008; 16: 1474–1480.

    Article  CAS  Google Scholar 

  11. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  Google Scholar 

  12. Kalyuzhniy O, Di Paolo NC, Silvestry M, Hofherr SE, Barry MA, Stewart PL et al. Adenovirus serotype 5 hexon is critical for virus infection of hepatocytes in vivo. Proc Natl Acad Sci USA 2008; 105: 5483–5488.

    Article  CAS  Google Scholar 

  13. Alba R, Bradshaw AC, Coughlan L, Denby L, McDonald RA, Waddington SN et al. Biodistribution and retargeting of FX-binding ablated adenovirus serotype 5 vectors. Blood 2010; 116: 2656–2664.

    Article  CAS  Google Scholar 

  14. Bradshaw AC, Parker AL, Duffy MR, Coughlan L, van Rooijen N, Kähäri VM et al. Requirements for receptor engagement during infection by adenovirus complexed with blood coagulation factor X. PLoS Pathog 2010; 6: e1001142.

  15. Lievens J, Snoeys J, Vekemans K, Van Linthout S, de Zanger R, Collen D et al. The size of sinusoidal fenestrae is a critical determinant of hepatocyte transduction after adenoviral gene transfer. Gene Therapy 2004; 11: 1523–1531.

    Article  CAS  Google Scholar 

  16. Hamid O, Varterasian ML, Wadler S, Hecht JR, Benson III A, Galanis E et al. Phase II trial of intravenous CI-1042 in patients with metastatic colorectal cancer. J Clin Oncol 2003; 21: 1498–1504.

    Article  CAS  Google Scholar 

  17. Morral N, O’Neal WK, Rice K, Leland MM, Piedra PA, Aguilar-Córdova E et al. Lethal toxicity, severe endothelial injury, and a threshold effect with high doses of an adenoviral vector in baboons. Hum Gene Ther 2002; 13: 143–154.

    Article  CAS  Google Scholar 

  18. Ni S, Bernt K, Gaggar A, Li ZY, Kiem HP, Lieber A . Evaluation of biodistribution and safety of adenovirus vectors containing group B fibers after intravenous injection into baboons. Hum Gene Ther 2005; 16: 664–677.

    Article  CAS  Google Scholar 

  19. Smith TA, Idamakanti N, Marshall-Neff J, Rollence ML, Wright P, Kaloss M et al. Receptor interactions involved in adenoviral-mediated gene delivery after systemic administration in non-human primates. Hum Gene Ther 2003; 14: 1595–1604.

    Article  CAS  Google Scholar 

  20. Raper SE, Haskal ZJ, Ye X, Pugh C, Furth EE, Gao GP et al. Selective gene transfer into the liver of non-human primates with E1-deleted, E2A-defective, or E1-E4 deleted recombinant adenoviruses. Hum Gene Ther 1998; 9: 671–679.

    Article  CAS  Google Scholar 

  21. Brunetti-Pierri N, Stapleton GE, Palmer DJ, Zuo Y, Mane VP, Finegold MJ et al. Pseudo-hydrodynamic delivery of helper-dependent adenoviral vectors into non-human primates for liver-directed gene therapy. Mol Ther 2007; 15: 732–740.

    Article  CAS  Google Scholar 

  22. Fontanellas A, Hervás-Stubbs S, Mauleón I, Dubrot J, Mancheño U, Collantes M et al. Intensive pharmacological immunosuppression allows for repetitive liver gene transfer with recombinant adenovirus in nonhuman primates. Mol Ther 2010; 18: 754–765.

    Article  CAS  Google Scholar 

  23. Sullivan DE, Dash S, Du H, Hiramatsu N, Aydin F, Kolls J et al. Liver-directed gene transfer in non-human primates. Hum Gene Ther 1997; 8: 1195–1206.

    Article  CAS  Google Scholar 

  24. Sakurai F, Nakamura S, Akitomo K, Shibata H, Terao K, Kawabata K et al. Transduction properties of adenovirus serotype 35 vectors after intravenous administration into nonhuman primates. Mol Ther 2008; 16: 726–733.

    Article  CAS  Google Scholar 

  25. Nunes FA, Furth EE, Wilson JM, Raper SE . Gene transfer into the liver of nonhuman primates with E1-deleted recombinant adenoviral vectors: safety of readministration. Hum Gene Ther 1999; 10: 2515–2526.

    Article  CAS  Google Scholar 

  26. Schuettrumpf J, Zou J, Zhang Y, Schlachterman A, Liu YL, Edmonson S et al. The inhibitory effects of anticoagulation on in vivo gene transfer by adeno-associated viral or adenoviral vectors. Mol Ther 2006; 13: 88–97.

    Article  CAS  Google Scholar 

  27. Wisse E, Jacobs F, Topal B, Frederik P, De Geest B . The size of endothelial fenestrae in human liver sinusoids: implications for hepatocyte-directed gene transfer. Gene Therapy 2008; 15: 1193–1199.

    Article  CAS  Google Scholar 

  28. Nicol CG, Graham D, Miller WH, White SJ, Smith TA, Nicklin SA et al. Effect of adenovirus serotype 5 fiber and penton modifications on in vivo tropism in rats. Mol Ther 2004; 10: 343–353.

    Article  Google Scholar 

  29. Seiradake E, Henaff D, Wodrich H, Billet O, Perreau M, Hippert C et al. The cell adhesion molecule ‘CAR’ and sialic acid on human erythrocytes influence adenovirus in vivo biodistribution. PLoS Pathog 2009; 5: e1000277.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Nicola Britton and Gregor Aitchison at the British Heart Foundation Glasgow Cardiovascular Research Centre (BHF GCRC) for technical assistance. This work was supported by the European Commission FP7 BRAINCAV program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A H Baker.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alba, R., Bradshaw, A., Mestre-Francés, N. et al. Coagulation factor X mediates adenovirus type 5 liver gene transfer in non-human primates (Microcebus murinus). Gene Ther 19, 109–113 (2012). https://doi.org/10.1038/gt.2011.87

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.87

Keywords

This article is cited by

Search

Quick links