Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE

Abstract

Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive disorder caused by mutations in the TYMP gene, which encodes thymidine phosphorylase (TP). TP dysfunction results in systemic thymidine (dThd) and deoxyuridine (dUrd) overload, which selectively impair mitochondrial DNA replication. Allogeneic hematopoietic transplantation has been used to treat MNGIE patients; however, this approach has serious adverse effects, including the toxicity of myeloablative conditioning, graft rejection and graft-versus-host disease. With the aim of testing the feasibility of gene therapy for MNGIE, we transduced TP-deficient B-lymphoblastoid cells from two MNGIE patients, with lentiviral vectors carrying a functional copy of the human TYMP DNA coding sequence. This restored TP activity in the cells, which reduced the excretion of dThd and dUrd and their concentrations when added in excess. Additionally, lentiviral-mediated hematopoietic gene therapy was used in partially myeloablated double Tymp/Upp1 knockout mice. In spite of the relatively low levels of molecular chimerism achieved, high levels of TP activity were observed in the peripheral blood of the transplanted mice, with a concomitant reduction of nucleoside concentrations. Our results suggest that hematopoietic gene therapy could be an alternative treatment for this devastating disorder in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Nishino I, Spinazzola A, Hirano M . Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 1999; 283: 689–692.

    Article  CAS  Google Scholar 

  2. Hirano M, Nishigaki Y, Marti R . Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a disease of two genomes. Neurologist 2004; 10: 8–17.

    Article  Google Scholar 

  3. Lara MC, Valentino ML, Torres-Torronteras J, Hirano M, Martí R . Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): biochemical features and therapeutic approaches. Biosci Rep 2007; 27: 151–163.

    Article  CAS  Google Scholar 

  4. Halter J, Schüpbach WM, Casali C, Elhasid R, Fay K, Hammans S et al. Allogeneic hematopoietic SCT as treatment option for patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): a consensus conference proposal for a standardized approach. Bone Marrow Transplant 2011; 46: 330–337.

    Article  CAS  Google Scholar 

  5. Desgranges C, Razaka G, Rabaud M, Bricaud H . Catabolism of thymidine in human blood platelets: purification and properties of thymidine phosphorylase. Biochim Biophys Acta 1981; 654: 211–218.

    Article  CAS  Google Scholar 

  6. Marti R, Nishigaki Y, Hirano M . Elevated plasma deoxyuridine in patients with thymidine phosphorylase deficiency. Biochem Biophys Res Commun 2003; 303: 14–18.

    Article  CAS  Google Scholar 

  7. Spinazzola A, Marti R, Nishino I, Andreu AL, Naini A, Tadesse S et al. Altered thymidine metabolism due to defects of thymidine phosphorylase. J Biol Chem 2002; 277: 4128–4133.

    Article  CAS  Google Scholar 

  8. Valentino ML, Martí R, Tadesse S, López LC, Manes JL, Lyzak J et al. Thymidine and deoxyuridine accumulate in tissues of patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). FEBS Lett 2007; 581: 3410–3414.

    Article  CAS  Google Scholar 

  9. Ferraro P, Pontarin G, Crocco L, Fabris S, Reichard P, Bianchi V et al. Mitochondrial deoxynucleotide pools in quiescent fibroblasts: a possible model for mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). J Biol Chem 2005; 280: 24472–24480.

    Article  CAS  Google Scholar 

  10. Lopez LC, Akman HO, García-Cazorla A, Dorado B, Martí R, Nishino I et al. Unbalanced deoxynucleotide pools cause mitochondrial DNA instability in thymidine phosphorylase-deficient mice. Hum Mol Genet 2009; 18: 714–722.

    Article  CAS  Google Scholar 

  11. De Vocht C, Ranquin A, Willaert R, Van Ginderachter JA, Vanhaecke T, Rogiers V et al. Assessment of stability, toxicity and immunogenicity of new polymeric nanoreactors for use in enzyme replacement therapy of MNGIE. J Control Release 2009; 137: 246–254.

    Article  CAS  Google Scholar 

  12. Hirano M, Martí R, Casali C, Tadesse S, Uldrick T, Fine B et al. Allogeneic stem cell transplantation corrects biochemical derangements in MNGIE. Neurology 2006; 67: 1458–1460.

    Article  CAS  Google Scholar 

  13. Moran NF, Bain MD, Muqit MM, Bax BE . Carrier erythrocyte entrapped thymidine phosphorylase therapy for MNGIE. Neurology 2008; 71: 686–688.

    Article  CAS  Google Scholar 

  14. Yavuz H, Ozel A, Christensen M, Christensen E, Schwartz M, Elmaci M et al. Treatment of mitochondrial neurogastrointestinal encephalomyopathy with dialysis. Arch Neurol 2007; 64: 435–438.

    Article  Google Scholar 

  15. Hirano M, Casali C, Tadesse S, Stanzani M, Savage DG . Sustained biochemical and clinical improvements two years post-allogeneic stem cell transplantation in a patient with MNGIE. Neurology 2008; 70 (Suppl 1): A406–A407.

    Google Scholar 

  16. Schupbach M, Benoist JF, Casali C, Elhasid R, Fay K, Hahn D et al. Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) for Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE). Neurology 2009; 73: 332–332.

    Google Scholar 

  17. Marti R, Spinazzola A, Tadesse S, Nishino I, Nishigaki Y, Hirano M . Definitive diagnosis of mitochondrial neurogastrointestinal encephalomyopathy by biochemical assays. Clin Chem 2004; 50: 120–124.

    Article  CAS  Google Scholar 

  18. Lara MC, Weiss B, Illa I, Madoz P, Massuet L, Andreu AL et al. Infusion of platelets transiently reduces nucleoside overload in MNGIE. Neurology 2006; 67: 1461–1463.

    Article  CAS  Google Scholar 

  19. Copelan EA . Hematopoietic stem-cell transplantation. N Engl J Med 2006; 354: 1813–1826.

    Article  CAS  Google Scholar 

  20. Aiuti A, Slavin S, Aker M, Ficara F, Deola S, Mortellaro A et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 2002; 296: 2410–2413.

    Article  CAS  Google Scholar 

  21. Cartier N, Hacein-Bey-Abina S, Bartholomae CC, Veres G, Schmidt M, Kutschera I et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 2009; 326: 818–823.

    Article  CAS  Google Scholar 

  22. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 2006; 12: 401–409.

    Article  CAS  Google Scholar 

  23. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302: 415–419.

    Article  CAS  Google Scholar 

  24. Stein S, Ott MG, Schultze-Strasser S, Jauch A, Burwinkel B, kinner A et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med 2010; 16: 198–204.

    Article  CAS  Google Scholar 

  25. Matrai J, Chuah MK, Vandendriessche T . Recent advances in lentiviral vector development and applications. Mol Ther 2010; 18: 477–490.

    Article  CAS  Google Scholar 

  26. Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M et al. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 2009; 119: 964–975.

    Article  CAS  Google Scholar 

  27. Wu X, Li Y, Crise B, Burgess SM . Transcription start regions in the human genome are favored targets for MLV integration. Science 2003; 300: 1749–1751.

    Article  CAS  Google Scholar 

  28. Gamez J, Lara MC, Mearin F, Oliveras-Ley C, Raguer N, Olive M et al. A novel thymidine phosphorylase mutation in a Spanish MNGIE patient. J Neurol Sci 2005; 228: 35–39.

    Article  CAS  Google Scholar 

  29. Sugimoto M, Tahara H, Ide T, Furuichi Y . Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein-Barr virus. Cancer Res 2004; 64: 3361–3364.

    Article  CAS  Google Scholar 

  30. el Kouni MH, el Kouni MM, Naguib FN . Differences in activities and substrate specificity of human and murine pyrimidine nucleoside phosphorylases: implications for chemotherapy with 5-fluoropyrimidines. Cancer Res 1993; 53: 3687–3693.

    CAS  PubMed  Google Scholar 

  31. Meza NW, Puyet A, Pérez-Benavente S, Quintana-Bustamante O, Diez A, Bueren JA et al. Functional analysis of gammaretroviral vector transduction by quantitative PCR. J Gene Med 2006; 8: 1097–1104.

    Article  CAS  Google Scholar 

  32. Ferraro P et al. Quantitation of cellular deoxynucleoside triphosphates. Nucleic Acids Res 2010; 38: e85.

    Article  Google Scholar 

  33. Pontarin G, Gallinaro L, Ferraro P, Reichard P, Bianchi V . Origins of mitochondrial thymidine triphosphate: dynamic relations to cytosolic pools. Proc Natl Acad Sci USA 2003; 100: 12159–12164.

    Article  CAS  Google Scholar 

  34. Bradford MM . A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248–254.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Luigi Naldini for kindly providing the lentiviral vectors p305 and p-sham, and Michael Terry for his English Language assistance. This work was supported by the Spanish Instituto de Salud Carlos III [PI 06/0735, PS09/01591, Miguel Servet grants to JB and RM] and the United Mitochondrial Disease Foundation [UMDF 04/042].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Martí.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Torronteras, J., Gómez, A., Eixarch, H. et al. Hematopoietic gene therapy restores thymidine phosphorylase activity in a cell culture and a murine model of MNGIE. Gene Ther 18, 795–806 (2011). https://doi.org/10.1038/gt.2011.24

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.24

Keywords

This article is cited by

Search

Quick links