Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Optogenetic therapy for retinitis pigmentosa

Abstract

Retinitis pigmentosa (RP) refers to a diverse group of progressive, hereditary diseases of the retina that lead to incurable blindness and affect two million people worldwide. Artificial photoreceptors constructed by gene delivery of light-activated channels or pumps (‘optogenetic tools’) to surviving cell types in the remaining retinal circuit has been shown to restore photosensitivity in animal models of RP at the level of the retina and cortex as well as behaviorally. The translational potential of this optogenetic approach has been evaluated using in vitro studies involving post-mortem human retinas. Here, we review recent developments in this expanding field and discuss the potential and limitations of optogenetic engineering for the treatment of RP.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2

References

  1. Farrar GJ, Kenna PF, Humphries P . On the genetics of retinitis pigmentosa and on mutation-independent approaches to therapeutic intervention. EMBO J 2002; 21: 857–864.

    Article  CAS  Google Scholar 

  2. Wright AF, Chakarova CF, Abd El-Aziz MM, Bhattacharya SS . Photoreceptor degeneration: genetic and mechanistic dissection of a complex trait. Nat Rev Genet 2010; 11: 273–284.

    Article  CAS  Google Scholar 

  3. Koenekoop RK . Why do cone photoreceptors die in rod-specific forms of retinal degenerations? Ophthalmic Genet 2009; 30: 152–154.

    Article  CAS  Google Scholar 

  4. Sancho-Pelluz J, Arango-Gonzalez B, Kustermann S, Romero FJ, van Veen T, Zrenner E et al. Photoreceptor cell death mechanisms in inherited retinal degeneration. Mol Neurobiol 2008; 38: 253–269.

    Article  CAS  Google Scholar 

  5. Jacobson SG, Cideciyan AV . Treatment possibilities for retinitis pigmentosa. N Engl J Med 2010; 363: 1669–1671.

    Article  CAS  Google Scholar 

  6. Smith AJ, Bainbridge JW, Ali RR . Prospects for retinal gene replacement therapy. Trends Genet 2009; 25: 156–165.

    Article  CAS  Google Scholar 

  7. Cremers FP, van den Hurk JA, den Hollander AI . Molecular genetics of Leber congenital amaurosis. Hum Mol Genet 2002; 11: 1169–1176.

    Article  CAS  Google Scholar 

  8. Cideciyan AV, Aleman TS, Boye SL, Schwartz SB, Kaushal S, Roman AJ et al. Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics. Proc Natl Acad Sci USA 2008; 105: 15112–15117.

    Article  CAS  Google Scholar 

  9. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L et al. Treatment of leber congenital amaurosis due to RPE65 mutations by ocular subretinal injection of adeno-associated virus gene vector: short-term results of a phase I trial. Hum Gene Ther 2008; 19: 979–990.

    Article  CAS  Google Scholar 

  10. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K et al. Effect of gene therapy on visual function in Leber's congenital amaurosis. N Engl J Med 2008; 358: 2231–2239.

    Article  CAS  Google Scholar 

  11. Maguire AM, Simonelli F, Pierce EA, Pugh Jr EN, Mingozzi F, Bennicelli J et al. Safety and efficacy of gene transfer for Leber's congenital amaurosis. N Engl J Med 2008; 358: 2240–2248.

    Article  CAS  Google Scholar 

  12. Mussolino C, Sanges D, Marrocco E, Bonetti C, Di Vicino U, Marigo V et al. Zinc-finger-based transcriptional repression of rhodopsin in a model of dominant retinitis pigmentosa. EMBO Mol Med 2011; 3: 118–128.

    Article  CAS  Google Scholar 

  13. Hamel C . Retinitis pigmentosa. Orphanet J Rare Dis 2006; 1: 40.

    Article  Google Scholar 

  14. Leveillard T, Sahel JA . Rod-derived cone viability factor for treating blinding diseases: from clinic to redox signaling. Sci Transl Med 2010; 2: 26ps16.

    Article  Google Scholar 

  15. Sieving PA, Caruso RC, Tao W, Coleman HR, Thompson DJ, Fullmer KR et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci USA 2006; 103: 3896–3901.

    Article  CAS  Google Scholar 

  16. Punzo C, Kornacker K, Cepko CL . Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat Neurosci 2009; 12: 44–52.

    Article  CAS  Google Scholar 

  17. Nakazawa M, Ohguro H, Takeuchi K, Miyagawa Y, Ito T, Metoki T . Effect of nilvadipine on central visual field in retinitis pigmentosa: a 30-month clinical trial. Ophthalmologica 2011; 225: 120–126.

    Article  CAS  Google Scholar 

  18. Frasson M, Sahel JA, Fabre M, Simonutti M, Dreyfus H, Picaud S . Retinitis pigmentosa: rod photoreceptor rescue by a calcium-channel blocker in the rd mouse. Nat Med 1999; 5: 1183–1187.

    Article  CAS  Google Scholar 

  19. Dahlmann-Noor A, Vijay S, Jayaram H, Limb A, Khaw PT . Current approaches and future prospects for stem cell rescue and regeneration of the retina and optic nerve. Can J Ophthalmol 2010; 45: 333–341.

    Article  Google Scholar 

  20. Chader GJ, Weiland J, Humayun MS . Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis. Prog Brain Res 2009; 175: 317–332.

    Article  Google Scholar 

  21. Zrenner E . Will retinal implants restore vision? Science 2002; 295: 1022–1025.

    Article  CAS  Google Scholar 

  22. Zrenner E, Bartz-Schmidt KU, Benav H, Besch D, Bruckmann A, Gabel VP et al. Subretinal electronic chips allow blind patients to read letters and combine them to words. Proc Biol Sci 2011; 278: 1489–1497.

    Article  Google Scholar 

  23. Bi A, Cui J, Ma YP, Olshevskaya E, Pu M, Dizhoor AM et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 2006; 50: 23–33.

    Article  CAS  Google Scholar 

  24. Busskamp V, Duebel J, Balya D, Fradot M, Viney TJ, Siegert S et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 2010; 329: 413–417.

    Article  CAS  Google Scholar 

  25. Lagali PS, Balya D, Awatramani GB, Munch TA, Kim DS, Busskamp V et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11: 667–675.

    Article  CAS  Google Scholar 

  26. Bamann C, Nagel G, Bamberg E . Microbial rhodopsins in the spotlight. Curr Opin Neurobiol 2010; 20: 610–616.

    Article  CAS  Google Scholar 

  27. Zhang F, Aravanis AM, Adamantidis A, de Lecea L, Deisseroth K . Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci 2007; 8: 577–581.

    Article  CAS  Google Scholar 

  28. Miesenbock G . The optogenetic catechism. Science 2009; 326: 395–399.

    Article  Google Scholar 

  29. Roska B, Werblin F . Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 2001; 410: 583–587.

    Article  CAS  Google Scholar 

  30. Gollisch T, Meister M . Eye smarter than scientists believed: neural computations in circuits of the retina. Neuron 2010; 65: 150–164.

    Article  CAS  Google Scholar 

  31. Wässle H . Parallel processing in the mammalian retina. Nat Rev Neurosci 2004; 5: 747–757.

    Article  Google Scholar 

  32. Masland RH . The fundamental plan of the retina. Nat Neurosci 2001; 4: 877–886.

    Article  CAS  Google Scholar 

  33. DeVries SH, Baylor DA . An alternative pathway for signal flow from rod photoreceptors to ganglion cells in mammalian retina. Proc Natl Acad Sci USA 1995; 92: 10658–10662.

    Article  CAS  Google Scholar 

  34. Soucy E, Wang Y, Nirenberg S, Nathans J, Meister M . A novel signaling pathway from rod photoreceptors to ganglion cells in mammalian retina. Neuron 1998; 21: 481–493.

    Article  CAS  Google Scholar 

  35. Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 2003; 100: 13940–13945.

    Article  CAS  Google Scholar 

  36. Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K . Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 2005; 8: 1263–1268.

    Article  CAS  Google Scholar 

  37. Schobert B, Lanyi JK . Halorhodopsin is a light-driven chloride pump. J Biol Chem 1982; 257: 10306–10313.

    CAS  PubMed  Google Scholar 

  38. Han X, Boyden ES . Multiple-color optical activation, silencing, and desynchronization of neural activity, with single-spike temporal resolution. PLoS One 2007; 2: e299.

    Article  Google Scholar 

  39. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N et al. Multimodal fast optical interrogation of neural circuitry. Nature 2007; 446: 633–639.

    Article  CAS  Google Scholar 

  40. Vugler AA . Progress toward the maintenance and repair of degenerating retinal circuitry. Retina 2010; 30: 983–1001.

    Article  Google Scholar 

  41. Jones BW, Marc RE . Retinal remodeling during retinal degeneration. Exp Eye Res 2005; 81: 123–137.

    Article  CAS  Google Scholar 

  42. Marc RE, Jones BW, Watt CB, Strettoi E . Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607–655.

    Article  Google Scholar 

  43. Farah N, Reutsky I, Shoham S . Patterned optical activation of retinal ganglion cells. Conf Proc IEEE Eng Med Biol Soc 2007; 2007: 6368–6370.

    PubMed  Google Scholar 

  44. Tomita H, Sugano E, Isago H, Hiroi T, Wang Z, Ohta E et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 2010; 90: 429–436.

    Article  CAS  Google Scholar 

  45. Thyagarajan S, van Wyk M, Lehmann K, Lowel S, Feng G, Wassle H . Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J Neurosci 2010; 30: 8745–8758.

    Article  CAS  Google Scholar 

  46. Tomita H, Sugano E, Fukazawa Y, Isago H, Sugiyama Y, Hiroi T et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS One 2009; 4: e7679.

    Article  Google Scholar 

  47. Zhang Y, Ivanova E, Bi A, Pan ZH . Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 2009; 29: 9186–9196.

    Article  CAS  Google Scholar 

  48. Greenberg KP, Pham A, Werblin FS . Differential targeting of optical neuromodulators to ganglion cell soma and dendrites allows dynamic control of center-surround antagonism. Neuron 2011; 69: 713–720.

    Article  CAS  Google Scholar 

  49. Caporale N, Kolstad KD, Lee T, Tochitsky I, Dalkara D, Trauner D et al. LiGluR restores visual responses in rodent models of inherited blindness. Mol Ther 2011; 19: 1212–1219.

    Article  CAS  Google Scholar 

  50. Matsuda T, Cepko CL . Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci USA 2004; 101: 16–22.

    Article  CAS  Google Scholar 

  51. Doroudchi MM, Greenberg KP, Liu J, Silka KA, Boyden ES, Lockridge JA et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19: 1220–1229.

    Article  CAS  Google Scholar 

  52. Fradot M, Busskamp V, Forster V, Cronin T, Leveillard T, Bennett J et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum Gene Ther 2011; 22: 587–593.

    Article  CAS  Google Scholar 

  53. Lin B, Masland RH, Strettoi E . Remodeling of cone photoreceptor cells after rod degeneration in rd mice. Exp Eye Res 2009; 88: 589–599.

    Article  CAS  Google Scholar 

  54. Milam AH, Li ZY, Fariss RN . Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1998; 17: 175–205.

    Article  CAS  Google Scholar 

  55. Humayun MS, Prince M, de Juan Jr E, Barron Y, Moskowitz M, Klock IB et al. Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. Invest Ophthalmol Vis Sci 1999; 40: 143–148.

    CAS  PubMed  Google Scholar 

  56. Degenaar P, Grossman N, Memon MA, Burrone J, Dawson M, Drakakis E et al. Optobionic vision—a new genetically enhanced light on retinal prosthesis. J Neural Eng 2009; 6: 035007.

    Article  Google Scholar 

  57. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci 2011; 52: 2775–2783.

    Article  CAS  Google Scholar 

  58. Berndt A, Yizhar O, Gunaydin LA, Hegemann P, Deisseroth K . Bi-stable neural state switches. Nat Neurosci 2009; 12: 229–234.

    Article  CAS  Google Scholar 

  59. Kleinlogel S, Feldbauer K, Dempski RE, Fotis H, Wood PG, Bamann C et al. Ultra light-sensitive and fast neuronal activation with the Ca(2)+-permeable channelrhodopsin CatCh. Nat Neurosci 2011; 14: 513–518.

    Article  CAS  Google Scholar 

  60. Foster RG, Hankins MW . Non-rod, non-cone photoreception in the vertebrates. Prog Retin Eye Res 2002; 21: 507–527.

    Article  Google Scholar 

  61. Mancuso K, Hauswirth WW, Li Q, Connor TB, Kuchenbecker JA, Mauck MC et al. Gene therapy for red-green colour blindness in adult primates. Nature 2009; 461: 784–787.

    Article  CAS  Google Scholar 

  62. Jacobson SG, Roman AJ, Aleman TS, Sumaroka A, Herrera W, Windsor EA et al. Normal central retinal function and structure preserved in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2010; 51: 1079–1085.

    Article  Google Scholar 

  63. Lin B, Koizumi A, Tanaka N, Panda S, Masland RH . Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin. Proc Natl Acad Sci USA 2008; 105: 16009–16014.

    Article  CAS  Google Scholar 

  64. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL et al. Gene therapy for Leber's congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 2010; 18: 643–650.

    Article  CAS  Google Scholar 

  65. Amado D, Mingozzi F, Hui D, Bennicelli JL, Wei Z, Chen Y et al. Safety and efficacy of subretinal readministration of a viral vector in large animals to treat congenital blindness. Sci Transl Med 2010; 2: 21ra16.

    Article  Google Scholar 

  66. Klimczak RR, Koerber JT, Dalkara D, Flannery JG, Schaffer DV . A novel adeno-associated viral variant for efficient and selective intravitreal transduction of rat Muller cells. PLoS One 2009; 4: e7467.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Roska.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Busskamp, V., Picaud, S., Sahel, J. et al. Optogenetic therapy for retinitis pigmentosa. Gene Ther 19, 169–175 (2012). https://doi.org/10.1038/gt.2011.155

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2011.155

Keywords

  • ocular gene transfer
  • optogenetics
  • retina

This article is cited by

Search

Quick links