Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Addition of adenoviral vector targeting of chemotherapy to the MUC-1/ecdCD40L VPPP vector prime protein boost vaccine prolongs survival of mice carrying growing subcutaneous deposits of Lewis lung cancer cells

Abstract

We studied the effect of adding chemotherapy or vector targeted chemotherapy to the administration of an Ad-sig-hMUC-1/ecdCD40L adenoviral vector prime-hMUC-1/ecdCD40L protein boost cancer vaccine (designated hMUC-1/ecdCD40L VPPP vaccine), which were administered to test mice 10 days following subcutaneous (s.c.) inoculation of 500 000 Lewis Lung Carcinoma cells, at a time when the average volume of the s.c. tumors was 50 cu mm. The survival of hMUC-1/ecdCD40L VPPP vaccine-treated mice was twice as long as untreated mice. Addition of vector-targeted chemotherapy (AdCMVCDIRESE1A/5FC) to the hMUC-1/ecdCD40L VPPP vaccine 10 days after tumor inoculation significantly (P=0.0062) prolonged the survival of the test mice over administration of the hMUC-1/ecdCD40L VPPP vaccine alone or the control mice (P<0.00001). Interestingly, the combination of the AdCMVCDIRESE1A/5FC vector-targeted chemotherapy to the hMUC-1/ecdCD40L VPPP vaccine decreased the levels of CD44+CD24− cells in s.c. deposits of the human MUC-1-positive Lewis Lung Cancer cell line (LL2/LL1hMUC-1) by 20 fold. These results suggest that the addition of vector-targeted chemotherapy to an adenoviral-based cancer vaccine is a strategy that deserves further testing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Deng Y, Jing Y, Campbell AE, Gravenstein S . Age-related impaired type 1T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro, and blunted response to influenza vaccination in vivo in the elderly. J Immunol 2004; 172: 3437–3446.

    Article  CAS  PubMed Central  Google Scholar 

  2. Weinberg AD, Thalhofer C, Morris N, Walker JM, Seiss D, Wong S et al. Anti-OX40 (CD134) administration to nonhuman primates: immunostimulatory effects and toxicokinetic study. J Immunother 2006; 29: 575–585.

    Article  CAS  PubMed Central  Google Scholar 

  3. Eaton SM, Burns EM, Kusser K, Randall TK, Haynes L . Age-related defects in CD4T cells cognate helper function lead to reductions in humoral responses. J Exp Med 2004; 200: 1613–1622.

    Article  CAS  PubMed Central  Google Scholar 

  4. Dong L, Mori I, Hossain J, Liu B, Kimura Y . An immunostimulatory oligodeoxynucleotide containing a cytidine-guanosine motif protects senescence-accelerated mice from lethal influenza virus by augmenting the T helper type 1 response. J Gen Virol 2003; 84: 1623–1628.

    Article  CAS  PubMed Central  Google Scholar 

  5. Zhang L, Tang YC, Akbulut H, Zelterman D, Linton P-J, Deisseroth A . An adenoviral vector cancer vaccine. Proc Natl Acad Sci USA 2003; 100: 15202–15206.

    Google Scholar 

  6. Tang Y, Zhang L, Yuan J, Akbulut H, Maynard J, Linton PJ et al. Loading of APC by CD40 ligand/tumor antigen secretory protein generates protection from cancer cell lines. Blood 2004; 104: 2704–2713.

    Article  CAS  PubMed Central  Google Scholar 

  7. Tang YC, Maynard J, Akbulut H, Petersen L, Fang X, Zhang WW et al. Vector prime/protein boost vaccine which overcomes defects acquired during aging and cancer. J Immunol 2006; 177: 5697–5707.

    Article  CAS  PubMed Central  Google Scholar 

  8. Akbulut H, Tang Y, Maynard J, Zhang L, Pizzorno G, Deisseroth A . Vector-mediated delivery of 5FU. Clin Cancer Res 2004; 10: 7738–7746.

    Article  CAS  PubMed Central  Google Scholar 

  9. Akbulut H, Tang YC, Akbulut KG, Maynard J, Zhang L, Deisseroth A . Antitumor immune response induced by i.t. injection of vector activated dendritic cells and chemotherapy suppresses metastatic breast cancer. Mol Cancer Ther 2006; 5: 1975–1985.

    Article  CAS  PubMed Central  Google Scholar 

  10. Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 2006; 66: 6063–6071.

    Article  CAS  PubMed Central  Google Scholar 

  11. LaPointe J, Li C, Higgins JP, van de Rijn M, Bair E, Montgomery K et al. Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc Natl Acad Sci USA 2004; 101: 811–816.

    Article  CAS  PubMed Central  Google Scholar 

  12. Feng H, Ghazizadeh M, Konishi H, Araki T . Expression of MUC1 and MUC2 Mucin Gene Products in Human Ovarian Carcinomas. Japanese J Clin Oncol 2002; 32: 525–529.

    Article  Google Scholar 

  13. Tamada Y, Takeuchi H, Suzuki N, Susumu N, Aoki D, Irimura T . Biological and therapeutic significance of MUC1 with sialoglycans in clear cell adenocarcinoma of the ovary. Cancer Sci 2007; 98: 1586–1591.

    Article  CAS  PubMed Central  Google Scholar 

  14. Glinsky GV, Berezovska O, Glinskii AB . Microarray analysis identifies a death from cancer signature predicting therapy failure in patients with multiple types of cancer. J Clin Invest 2005; 115: 1503–1521.

    Article  CAS  PubMed Central  Google Scholar 

  15. Liu R, Wang XH, Chen GY, Dalerba P, Gurney A, Hoey T et al. The prognostic role of a gene signature from tumorigenic breast cancer cells. New England J Med 2007; 356: 217–226.

    Article  CAS  Google Scholar 

  16. Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L et al. Isolation of rara circulating tumour cells in cancer patients by microchip technology. Nature 2007; 450: 1235–1241.

    Article  CAS  PubMed Central  Google Scholar 

  17. Terstappen LWMM . Monitoring and characterization of circulating tumor cells in cancer patients. In: American Association for Cancer Research 99th Annual Meetiung Education Book; 2008 Aor 12-16. AACR: San Diego, CA, USA, 2008, pp 617–624.

    Google Scholar 

  18. Berezovska OP, Glinskii AB, Yang Z, Li XM, Hoffman RM, Glinsky GV . Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 2006; 5: 1886–1901.

    Article  CAS  PubMed Central  Google Scholar 

  19. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006; 12: 5615–5621.

    Article  CAS  PubMed Central  Google Scholar 

  20. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierachy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed Central  Google Scholar 

  21. O’Brien CA, Pollett A, Gallinger S, Dick JE . A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007; 445: 106–110.

    Article  PubMed Central  Google Scholar 

  22. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed Central  Google Scholar 

  23. Schatton T, Murphy GF, Frank NY, Yamaura K, Waaga-Gasser AM, Gasser M et al. Identification of cells initiating human melanomas. Nature 2008; 451: 345–349.

    Article  CAS  PubMed Central  Google Scholar 

  24. Engelmann K, Shen HM, Finn OJ . CDF7 side population cells with characteristics of stem/progenitor cells express the tumor antigen MUC-1. Cancer Res 2008; 68: 2419–2426.

    Article  CAS  PubMed Central  Google Scholar 

  25. Mahanta SJ, Fessler SP, Park JH, Bamdad C . A minimal fragment of MUC1 mediates growth of cancer cells. PLoS ONE 2008; 3: e2054.

    Article  PubMed Central  Google Scholar 

  26. Hikita ST, Kosik KS, Clegg DO, Bamdad C . MUC1 mediates the growth of human pluripotent stem cells. PLoS ONE 2008; 3: e3312.

    Article  PubMed Central  Google Scholar 

  27. Tang YC, Akbulut H, Maynard J, Zhang L, Petersen L, Deisseroth A . Vaccine strategies for cancer and infectious diseases in the elderly. In: Chiai T, Shimada H, Tagawa M (eds). Gene Therapy 2007: Japanese Ministry of Science and Education: Chiba, Japan, 2007, pp 78–85.

    Google Scholar 

  28. Akbulut H, Zhang L, Tang Y, Deisseroth AB . The efficiency of replication-competent adenoviral vectors carrying L-plastin promoted cytosine deaminase gene in colon cancer. Cancer Gene Ther 2003; 10: 388–395.

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhang L, Akbulut H, Peng XY, Pizzorno G, Deisseroth AB . Adenoviral vectors with E1A Tumor specific promoters are selectively cytolytic for breast cancer and on melanoma. Mol Ther 2002; 6: 386–393.

    Article  CAS  PubMed Central  Google Scholar 

  30. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  Google Scholar 

  31. Ho MM, Ng AV, Lam S, Hung JY . Side population in human lung cancer cdell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67: 4727–4733.

    Article  Google Scholar 

  32. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U et al. A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101: 14228–14233.

    Article  CAS  PubMed Central  Google Scholar 

  33. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the support of the SKCC by Sidney Kimmel and the following grants to Albert Deisseroth: DOD (Grants 17999457 and BC022063), the California Breast Cancer Research Program (CBCRP 12IB-0159), the NIH Grant PPG (CA 104898), a grant from the Kaye and Richard Woltman Foundation, and a grant from the Breast Cancer Research Foundation. We acknowledge support to Hakan Akbulut from the Turkish Academy of Sciences (TUBA-GEBIP-2001-1), the National Cancer Institute of United States of America, The Lechner/Haag Foundation and UICC-Yamagiwa-Yoshida international study grants. The views expressed are the result of independent work and do not represent the views or findings of the US FDA or the US government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Deisseroth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbulut, H., Tang, Y., Akbulut, K. et al. Addition of adenoviral vector targeting of chemotherapy to the MUC-1/ecdCD40L VPPP vector prime protein boost vaccine prolongs survival of mice carrying growing subcutaneous deposits of Lewis lung cancer cells. Gene Ther 17, 1333–1340 (2010). https://doi.org/10.1038/gt.2010.93

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.93

Keywords

This article is cited by

Search

Quick links