Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Retargeted adenoviral cancer gene therapy for tumour cells overexpressing epidermal growth factor receptor or urokinase-type plasminogen activator receptor

Abstract

We have assessed the ability of bispecific fusion proteins to improve adenovirus-mediated transfer of therapeutic and marker transgenes. We constructed an expression vector that can be easily modified to synthesize a variety of fusion proteins for retargeting adenoviral gene therapy vectors to cell surface markers, which are differentially expressed between normal and cancer cells. Adenoviral transduction can be improved in a number of tumour cell lines which overexpress EGFR (epidermal growth factor receptor) or uPAR (urokinase-type plasminogen activator receptor), but which have only low levels of endogenous hCAR (human coxsackie B and adenovirus receptor) expression. Up to 40-fold improvement in β-galactosidase transgene expression was seen using an EGFR retargeting protein, and up to 16-fold using a second fusion protein targeting uPAR. In vitro, our uPAR retargeting fusion protein improved the sensitivity to adenoviral herpes simplex virus thymidine kinase/ganciclovir by an order of magnitude, whereas in vivo, our EGFR retargeting protein is able to significantly delay tumour growth in rodent animal models in a dose-dependent manner. The ‘cassette’ design of our fusion protein constructs offers a flexible method for the straightforward synthesis of multiple adenoviral retargeting proteins, directed against a variety of tumour-associated antigens, for use in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

EGFR:

epidermal growth factor receptor

GCV:

ganciclovir

hCAR:

human coxsackie B and adenovirus receptor

HSVtk:

herpes simplex virus thymidine kinase

2-ME:

2-mercaptoethanol

RGD:

Arginine-Glycine-Aspartate

sCAR:

extracellular domain of hCAR

uPAR:

urokinase-type plasminogen activator receptor.

References

  1. Lundstrom K . Latest development in viral vectors for gene therapy. Trends Biotechnol 2003; 21: 117–122.

    Article  CAS  PubMed  Google Scholar 

  2. Everts M, Curiel DT . Transductional targeting of adenoviral cancer gene therapy. Curr Gene Ther 2004; 4: 337–346.

    Article  CAS  PubMed  Google Scholar 

  3. Mathias P, Galleno M, Nemerow GR . Interactions of soluble recombinant integrin alphav beta5 with human adenoviruses. J Virol 1998; 72: 8669–8675.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Hong SS, Karayan L, Tournier J, Curiel DT, Boulanger PA . Adenovirus type 5 fiber knob binds to MHC class I alpha2 domain at the surface of human epithelial and B lymphoblastoid cells. EMBO J 1997; 16: 2294–2306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dechecchi MC, Tamanini A, Bonizzato A, Cabrini G . Heparan sulfate glycosaminoglycans are involved in adenovirus type 5 and 2-host cell interactions. Virology 2000; 268: 382–390.

    Article  CAS  PubMed  Google Scholar 

  6. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H et al. Adenovirus serotype 5 hexon mediates liver gene transfer. Cell 2008; 132: 397–409.

    Article  CAS  PubMed  Google Scholar 

  7. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  8. Kim JS, Lee SH, Cho YS, Choi JJ, Kim YH, Lee JH . Enhancement of the adenoviral sensitivity of human ovarian cancer cells by transient expression of coxsackievirus and adenovirus receptor (CAR). Gynecol Oncol 2002; 85: 260–265.

    Article  CAS  PubMed  Google Scholar 

  9. Kim M, Zinn KR, Barnett BG, Sumerel LA, Krasnykh V, Curiel DT et al. The therapeutic efficacy of adenoviral vectors for cancer gene therapy is limited by a low level of primary adenovirus receptors on tumour cells. Eur J Cancer 2002; 38: 1917–1926.

    Article  CAS  PubMed  Google Scholar 

  10. Okegawa T, Pong RC, Li Y, Bergelson JM, Sagalowsky AI, Hsieh JT . The mechanism of the growth-inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of car protein structure. Cancer Res 2001; 61: 6592–6600.

    CAS  PubMed  Google Scholar 

  11. Sachs MD, Rauen KA, Ramamurthy M, Dodson JL, De Marzo AM, Putzi MJ et al. Integrin alpha(v) and coxsackie adenovirus receptor expression in clinical bladder cancer. Urology 2002; 60: 531–536.

    Article  PubMed  Google Scholar 

  12. Li Y, Pong RC, Bergelson JM, Hall MC, Sagalowsky AI, Tseng CP et al. Loss of adenoviral receptor expression in human bladder cancer cells: a potential impact on the efficacy of gene therapy. Cancer Res 1999; 59: 325–330.

    CAS  PubMed  Google Scholar 

  13. Mizuguchi H, Hayakawa T . Targeted adenovirus vectors. Hum Gene Ther 2004; 15: 1034–1044.

    Article  CAS  PubMed  Google Scholar 

  14. Wesseling JG, Bosma PJ, Krasnykh V, Kashentseva EA, Blackwell JL, Reynolds PN et al. Improved gene transfer efficiency to primary and established human pancreatic carcinoma target cells via epidermal growth factor receptor and integrin-targeted adenoviral vectors. Gene Therapy 2001; 8: 969–976.

    Article  CAS  PubMed  Google Scholar 

  15. Kanerva A, Wang M, Bauerschmitz GJ, Lam JT, Desmond RA, Bhoola SM et al. Gene transfer to ovarian cancer versus normal tissues with fiber-modified adenoviruses. Mol Ther 2002; 5: 695–704.

    Article  CAS  PubMed  Google Scholar 

  16. Haviv YS, Blackwell JL, Kanerva A, Nagi P, Krasnykh V, Dmitriev I et al. Adenoviral gene therapy for renal cancer requires retargeting to alternative cellular receptors. Cancer Res 2002; 62: 4273–4281.

    CAS  PubMed  Google Scholar 

  17. Belousova N, Korokhov N, Krendelshchikova V, Simonenko V, Mikheeva G, Triozzi PL et al. Genetically targeted adenovirus vector directed to CD40-expressing cells. J Virol 2003; 77: 11367–11377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Borovjagin AV, Krendelchtchikov A, Ramesh N, Yu DC, Douglas JT, Curiel DT . Complex mosaicism is a novel approach to infectivity enhancement of adenovirus type 5-based vectors. Cancer Gene Ther 2005; 12: 475–486.

    Article  CAS  PubMed  Google Scholar 

  19. Kashentseva EA, Douglas JT, Zinn KR, Curiel DT, Dmitriev IP . Targeting of adenovirus serotype 5 pseudotyped with short fiber from serotype 41 to c-erbB2-positive cells using bispecific single-chain diabody. J Mol Biol 2009; 388: 443–461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT . Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000; 74: 6875–6884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morrison J, Briggs SS, Green N, Fisher K, Subr V, Ulbrich K et al. Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol Ther 2008; 16: 244–251.

    Article  CAS  PubMed  Google Scholar 

  22. Grandis JR, Sok JC . Signaling through the epidermal growth factor receptor during the development of malignancy. Pharmacol Ther 2004; 102: 37–46.

    Article  CAS  PubMed  Google Scholar 

  23. Colquhoun AJ, Mellon JK . Epidermal growth factor receptor and bladder cancer. Postgrad Med J 2002; 78: 584–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Villares GJ, Zigler M, Blehm K, Bogdan C, McConkey D, Colin D et al. Targeting EGFR in bladder cancer. World J Urol 2007; 25: 573–579.

    Article  CAS  PubMed  Google Scholar 

  25. Cheng J, Huang H, Zhang ZT, Shapiro E, Pellicer A, Sun TT et al. Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Res 2002; 62: 4157–4163.

    CAS  PubMed  Google Scholar 

  26. Van Brussel JP, Mickisch GH . Prognostic factors in renal cell and bladder cancer. BJU Int 1999; 83: 902–908, quiz 908–909.

    Article  CAS  PubMed  Google Scholar 

  27. Black PC, Dinney CP . Growth factors and receptors as prognostic markers in urothelial carcinoma. Curr Urol Rep 2008; 9: 55–61.

    Article  PubMed  Google Scholar 

  28. Heist RS, Christiani D . EGFR-targeted therapies in lung cancer: predictors of response and toxicity. Pharmacogenomics 2009; 10: 59–68.

    Article  CAS  PubMed  Google Scholar 

  29. Karapetis CS, Khambata-Ford S, Jonker DJ, O’Callaghan CJ, Tu D, Tebbutt NC et al. K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 2008; 359: 1757–1765.

    Article  CAS  PubMed  Google Scholar 

  30. Andreasen PA, Kjoller L, Christensen L, Duffy MJ . The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1–22.

    Article  CAS  PubMed  Google Scholar 

  31. Mazar AP . Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 2008; 14: 5649–5655.

    Article  CAS  PubMed  Google Scholar 

  32. Ulisse S, Baldini E, Sorrenti S, D’Armiento M . The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 2009; 9: 32–71.

    Article  CAS  PubMed  Google Scholar 

  33. Duffy MJ, Duggan C . The urokinase plasminogen activator system: a rich source of tumour markers for the individualised management of patients with cancer. Clin Biochem 2004; 37: 541–548.

    Article  CAS  PubMed  Google Scholar 

  34. Pillay V, Dass CR, Choong PF . The urokinase plasminogen activator receptor as a gene therapy target for cancer. Trends Biotechnol 2007; 25: 33–39.

    Article  CAS  PubMed  Google Scholar 

  35. Shariat SF, Monoski MA, Andrews B, Wheeler TM, Lerner SP, Slawin KM . Association of plasma urokinase-type plasminogen activator and its receptor with clinical outcome in patients undergoing radical cystectomy for transitional cell carcinoma of the bladder. Urology 2003; 61: 1053–1058.

    Article  PubMed  Google Scholar 

  36. Champelovier P, Boucard N, Levacher G, Simon A, Seigneurin D, Praloran V . Plasminogen- and colony-stimulating factor-1-associated markers in bladder carcinoma: diagnostic value of urokinase plasminogen activator receptor and plasminogen activator inhibitor type-2 using immunocytochemical analysis. Urol Res 2002; 30: 301–309.

    Article  CAS  PubMed  Google Scholar 

  37. Seddighzadeh M, Steineck G, Larsson P, Wijkstrom H, Norming U, Onelov E et al. Expression of UPA and UPAR is associated with the clinical course of urinary bladder neoplasms. Int J Cancer 2002; 99: 721–726.

    Article  CAS  PubMed  Google Scholar 

  38. Chester JD, Kennedy W, Hall GD, Selby PJ, Knowles MA . Adenovirus-mediated gene therapy for bladder cancer: efficient gene delivery to normal and malignant human urothelial cells in vitro and ex vivo. Gene Therapy 2003; 10: 172–179.

    Article  CAS  PubMed  Google Scholar 

  39. Coughlan L, Vallath S, Saha A, Flak M, McNeish IA, Vassaux G et al. In vivo retargeting of Ad5 to {alpha}v{beta}6 integrin results in reduced hepatotoxicity and improved tumor uptake following systemic delivery. J Virol 2009; 83: 6416–6428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol 2008; 180: 4901–4909.

    Article  CAS  PubMed  Google Scholar 

  41. Hakkarainen T, Hemminki A, Pereboev AV, Barker SD, Asiedu CK, Strong TV et al. CD40 is expressed on ovarian cancer cells and can be utilized for targeting adenoviruses. Clin Cancer Res 2003; 9: 619–624.

    CAS  PubMed  Google Scholar 

  42. Izumi M, Kawakami Y, Glasgow JN, Belousova N, Everts M, Kim-Park S et al. In vivo analysis of a genetically modified adenoviral vector targeted to human CD40 using a novel transient transgenic model. J Gene Med 2005; 7: 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  43. Huch M, Abate-Daga D, Roig JM, Gonzalez JR, Fabregat J, Sosnowski B et al. Targeting the CYP2B 1/cyclophosphamide suicide system to fibroblast growth factor receptors results in a potent antitumoral response in pancreatic cancer models. Hum Gene Ther 2006; 17: 1187–1200.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu ZB, Makhija SK, Lu B, Wang M, Rivera AA, Preuss M et al. Transport across a polarized monolayer of Caco-2 cells by transferrin receptor-mediated adenovirus transcytosis. Virology 2004; 325: 116–128.

    Article  CAS  PubMed  Google Scholar 

  45. Jongmans W, van den Oudenalder K, Tiemessen DM, Molkenboer J, Willemsen R, Mulders PF et al. Targeting of adenovirus to human renal cell carcinoma cells. Urology 2003; 62: 559–565.

    Article  PubMed  Google Scholar 

  46. Nettelbeck DM, Rivera AA, Kupsch J, Dieckmann D, Douglas JT, Kontermann RE et al. Retargeting of adenoviral infection to melanoma: combining genetic ablation of native tropism with a recombinant bispecific single-chain diabody (scDb) adapter that binds to fiber knob and HMWMAA. Int J Cancer 2004; 108: 136–145.

    Article  CAS  PubMed  Google Scholar 

  47. Sebestyen Z, de Vrij J, Magnusson M, Debets R, Willemsen R . An oncolytic adenovirus redirected with a tumor-specific T-cell receptor. Cancer Res 2007; 67: 11309–11316.

    Article  CAS  PubMed  Google Scholar 

  48. Van Der Poel HG, Molenaar B, Van Beusechem VW, Haisma HJ, Rodriguez R, Curiel DT et al. Epidermal growth factor receptor targeting of replication competent adenovirus enhances cytotoxicity in bladder cancer. J Urol 2002; 168: 266–272.

    Article  CAS  PubMed  Google Scholar 

  49. Martin K, Brie A, Saulnier P, Perricaudet M, Yeh P, Vigne E . Simultaneous CAR- and alpha V integrin-binding ablation fails to reduce Ad5 liver tropism. Mol Ther 2003; 8: 485–494.

    Article  CAS  PubMed  Google Scholar 

  50. Liang Q, Dmitriev I, Kashentseva E, Curiel DT, Herschman HR . Noninvasive of adenovirus tumor retargeting in living subjects by a soluble adenovirus receptor-epidermal growth factor (sCAR-EGF) fusion protein. Mol Imaging Biol 2004; 6: 385–394.

    Article  PubMed  Google Scholar 

  51. Hutton KA, Trejdosiewicz LK, Thomas DF, Southgate J . Urothelial tissue culture for bladder reconstruction: an experimental study. J Urol 1993; 150: 721–725.

    Article  CAS  PubMed  Google Scholar 

  52. Workman P, Balmain A, Hickman JA, McNally NJ, Rohas AM, Mitchison NA et al. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Lab Anim 1988; 22: 195–201.

    Article  CAS  PubMed  Google Scholar 

  53. Shnyder SD, Cooper PA, Pettit GR, Lippert 3rd JW, Bibby MC . Combretastatin A-1 phosphate potentiates the antitumour activity of cisplatin in a murine adenocarcinoma model. Anticancer Res 2003; 23: 1619–1623.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancer Research UK. Thanks to Katie Hasler and Karen King for secretarial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Chester.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, T., Burdon, D., Steele, L. et al. Retargeted adenoviral cancer gene therapy for tumour cells overexpressing epidermal growth factor receptor or urokinase-type plasminogen activator receptor. Gene Ther 17, 1000–1010 (2010). https://doi.org/10.1038/gt.2010.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.45

Keywords

This article is cited by

Search

Quick links