Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer

Abstract

T-cell receptor (TCR) gene transfer is an attractive strategy to generate antigen-specific T-cells for adoptive immunotherapy of cancer and chronic viral infection. However, current TCR gene transfer protocols trigger T-cell differentiation into terminally differentiated effector cells, which likely have reduced ability to mediate disease protection in vivo. We have developed a lentiviral gene transfer strategy to generate TCR-transduced human T-cells without promoting T-cell differentiation. We found that a combination of interleukin-15 (IL15) and IL21 facilitated lentiviral TCR gene transfer into non-proliferating T-cells. The transduced T-cells showed redirection of antigen specificity and produced IL2, IFNγ and TNFα in a peptide-dependent manner. A significantly higher proportion of the IL15/IL21-stimulated T-cells were multi-functional and able to simultaneously produce all three cytokines (P<0.01), compared with TCR-transduced T-cells generated by conventional anti-CD3 plus IL2 stimulation, which primarily secreted only one cytokine. Similarly, IL15/IL21 maintained high levels of CD62L and CD28 expression in transduced T-cells, whereas anti-CD3 plus IL2 accelerated the loss of CD62L/CD28 expression. The data demonstrate that the combination of lentiviral TCR gene transfer together with IL15/IL21 stimulation can efficiently redirect the antigen specificity of resting primary human T-cells and generate multi-functional T-cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA et al. Use of gene-modified virus-specific T lymphocytes to control Epstein–Barr-virus-related lymphoproliferation. Lancet 1995; 345: 9–13.

    Article  CAS  PubMed  Google Scholar 

  2. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–1044.

    Article  CAS  PubMed  Google Scholar 

  3. Rooney CM, Smith CA, Ng CY, Loftin SK, Sixbey JW, Gan Y et al. Infusion of cytotoxic T cells for the prevention and treatment of Epstein–Barr virus-induced lymphoma in allogeneic transplant recipients. Blood 1998; 92: 1549–1555.

    CAS  PubMed  Google Scholar 

  4. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Einsele H, Roosnek E, Rufer N, Sinzger C, Riegler S, Loffler J et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood 2002; 99: 3916–3922.

    Article  CAS  PubMed  Google Scholar 

  6. Peggs KS, Verfuerth S, Pizzey A, Khan N, Guiver M, Moss PA et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet 2003; 362: 1375–1377.

    Article  PubMed  Google Scholar 

  7. Rosenberg SA, Dudley ME . Cancer regression in patients with metastatic melanoma after the transfer of autologous antitumor lymphocytes. Proc Natl Acad Sci USA 2004; 101 (Suppl 2): 14639–14645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cobbold M, Khan N, Pourgheysari B, Tauro S, McDonald D, Osman H et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med 2005; 202: 379–386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dudley ME, Wunderlich J, Nishimura MI, Yu D, Yang JC, Topalian SL et al. Adoptive transfer of cloned melanoma-reactive T lymphocytes for the treatment of patients with metastatic melanoma. J Immunother 2001; 24: 363–373.

    Article  CAS  PubMed  Google Scholar 

  10. Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA 2002; 99: 16168–16173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robbins PF, Dudley ME, Wunderlich J, El-Gamil M, Li YF, Zhou J et al. Cutting edge: persistence of transferred lymphocyte clonotypes correlates with cancer regression in patients receiving cell transfer therapy. J Immunol 2004; 173: 7125–7130.

    Article  CAS  PubMed  Google Scholar 

  12. Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR . Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest 2008; 118: 294–305.

    Article  CAS  PubMed  Google Scholar 

  13. Wherry EJ, Teichgraber V, Becker TC, Masopust D, Kaech SM, Antia R et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat Immunol 2003; 4: 225–234.

    Article  CAS  PubMed  Google Scholar 

  14. Gattinoni L, Klebanoff CA, Palmer DC, Wrzesinski C, Kerstann K, Yu Z et al. Acquisition of full effector function in vitro paradoxically impairs the in vivo antitumor efficacy of adoptively transferred CD8+ T cells. J Clin Invest 2005; 115: 1616–1626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gattinoni L, Powell Jr DJ, Rosenberg SA, Restifo NP . Adoptive immunotherapy for cancer: building on success. Nat Rev Immunol 2006; 6: 383–393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clay TM, Custer MC, Sachs J, Hwu P, Rosenberg SA, Nishimura MI . Efficient transfer of a tumor antigen-reactive TCR to human peripheral blood lymphocytes confers antitumor reactivity. J Immunol 1999; 163: 507–513.

    CAS  PubMed  Google Scholar 

  17. Cooper LJ, Kalos M, Lewinsohn DA, Riddell SR, Greenberg PD . Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000; 74: 8207–8212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fujio K, Misaki Y, Setoguchi K, Morita S, Kawahata K, Kato I et al. Functional reconstitution of class II MHC-restricted T cell immunity mediated by retroviral transfer of the alpha beta TCR complex. J Immunol 2000; 165: 528–532.

    Article  CAS  PubMed  Google Scholar 

  19. Kessels HW, Wolkers MC, van den Boom MD, van der Valk MA, Schumacher TN . Immunotherapy through TCR gene transfer. Nat Immunol 2001; 2: 957–961.

    Article  CAS  PubMed  Google Scholar 

  20. Stanislawski T, Voss RH, Lotz C, Sadovnikova E, Willemsen RA, Kuball J et al. Circumventing tolerance to a human MDM2-derived tumor antigen by TCR gene transfer. Nat Immunol 2001; 2: 962–970.

    Article  CAS  PubMed  Google Scholar 

  21. Heemskerk MH, Hoogeboom M, de Paus RA, Kester MG, van der Hoorn MA, Goulmy E et al. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood 2003; 102: 3530–3540.

    Article  CAS  PubMed  Google Scholar 

  22. Clay TM, Nishimura MI . Retroviral transfer of T-cell receptor genes into human peripheral blood lymphocytes. Methods Mol Biol 2003; 215: 227–234.

    CAS  PubMed  Google Scholar 

  23. Schaft N, Willemsen RA, de Vries J, Lankiewicz B, Essers BW, Gratama JW et al. Peptide fine specificity of anti-glycoprotein 100 CTL is preserved following transfer of engineered TCR alpha beta genes into primary human T lymphocytes. J Immunol 2003; 170: 2186–2194.

    Article  CAS  PubMed  Google Scholar 

  24. Chamoto K, Tsuji T, Funamoto H, Kosaka A, Matsuzaki J, Sato T et al. Potentiation of tumor eradication by adoptive immunotherapy with T-cell receptor gene-transduced T-helper type 1 cells. Cancer Res 2004; 64: 386–390.

    Article  CAS  PubMed  Google Scholar 

  25. Morgan RA, Dudley ME, Yu YY, Zheng Z, Robbins PF, Theoret MR et al. High efficiency TCR gene transfer into primary human lymphocytes affords avid recognition of melanoma tumor antigen glycoprotein 100 and does not alter the recognition of autologous melanoma antigens. J Immunol 2003; 171: 3287–3295.

    Article  CAS  PubMed  Google Scholar 

  26. Tahara H, Fujio K, Araki Y, Setoguchi K, Misaki Y, Kitamura T et al. Reconstitution of CD8+ T cells by retroviral transfer of the TCR alpha beta-chain genes isolated from a clonally expanded P815-infiltrating lymphocyte. J Immunol 2003; 171: 2154–2160.

    Article  CAS  PubMed  Google Scholar 

  27. Heemskerk MH, Hoogeboom M, Hagedoorn R, Kester MG, Willemze R, Falkenburg JH . Reprogramming of virus-specific T cells into leukemia-reactive T cells using T cell receptor gene transfer. J Exp Med 2004; 199: 885–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morris EC, Tsallios A, Bendle GM, Xue SA, Stauss HJ . A critical role of T cell antigen receptor-transduced MHC class I-restricted helper T cells in tumor protection. Proc Natl Acad Sci USA 2005; 102: 7934–7939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue SA, Gao L, Hart D, Gillmore R, Qasim W, Thrasher A et al. Elimination of human leukemia cells in NOD/SCID mice by WT1-TCR gene-transduced human T cells. Blood 2005; 106: 3062–3067.

    Article  CAS  PubMed  Google Scholar 

  30. Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008; 14: 1390–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 2006; 314: 126–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Qasim W, Mackey T, Sinclair J, Chatziandreou I, Kinnon C, Thrasher AJ et al. Lentiviral vectors for T-cell suicide gene therapy: preservation of T-cell effector function after cytokine-mediated transduction. Mol Ther 2007; 15: 355–360.

    Article  CAS  PubMed  Google Scholar 

  33. Cavalieri S, Cazzaniga S, Geuna M, Magnani Z, Bordignon C, Naldini L et al. Human T lymphocytes transduced by lentiviral vectors in the absence of TCR activation maintain an intact immune competence. Blood 2003; 102: 497–505.

    Article  CAS  PubMed  Google Scholar 

  34. Cohen CJ, Zhao Y, Zheng Z, Rosenberg SA, Morgan RA . Enhanced antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res 2006; 66 (17): 8878–8886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas S, Xue SA, Cesco-Gaspere M, San Jose E, Hart D, Morris E, Hans Stauss et al. Targeting the Wilms tumor antigen 1 by TCR gene transfer: TCR variants improve tetramer binding but not the function of gene modified human T cells. J Immunol 2007; 179: 5803–5810.

    Article  CAS  PubMed  Google Scholar 

  36. Acuto O, Michel F . CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 2003; 3: 939–951.

    Article  CAS  PubMed  Google Scholar 

  37. Topp MS, Riddell SR, Akatsuka Y, Jensen MC, Blattman JN, Greenberg PD . Restoration of CD28 expression in CD28- CD8+ memory effector T cells reconstitutes antigen-induced IL-2 production. J Exp Med 2003; 198: 947–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J et al. HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006; 107: 4781–4789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Darrah PA, Patel DT, De Luca PM, Lindsay RW, Davey DF, Flynn BJ et al. Multifunctional TH1 cells define a correlate of vaccine-mediated protection against Leishmania major. Nat Med 2007; 13: 843–850.

    Article  CAS  PubMed  Google Scholar 

  40. Joseph A, Zheng JH, Follenzi A, Dilorenzo T, Sango K, Hyman J et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008; 82: 3078–3089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tsuji T, Yasukawa M, Matsuzaki J, Ohkuri T, Chamoto K, Wakita D et al. Generation of tumor-specific, HLA class I-restricted human Th1 and Tc1 cells by cell engineering with tumor peptide-specific T-cell receptor genes. Blood 2005; 106: 470–476.

    Article  CAS  PubMed  Google Scholar 

  42. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther 2009; 17: 1453–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Frecha C, Costa C, Negre D, Gauthier E, Russell SJ, Cosset FL et al. Stable transduction of quiescent T cells without induction of cycle progression by a novel lentiviral vector pseudotyped with measles virus glycoproteins. Blood 2008; 112: 4843–4852.

    Article  CAS  PubMed  Google Scholar 

  44. Alves NL, Arosa FA, van Lier RA . IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 2005; 175: 755–762.

    Article  CAS  PubMed  Google Scholar 

  45. Li Y, Bleakley M, Yee C . IL-21 influences the frequency, phenotype, and affinity of the antigen-specific CD8 T cell response. J Immunol 2005; 175: 2261–2269.

    Article  CAS  PubMed  Google Scholar 

  46. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS et al. Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 2005; 201: 139–148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hinrichs CS, Spolski R, Paulos CM, Gattinoni L, Kerstann KW, Palmer DC et al. IL-2 and IL-21 confer opposing differentiation programs to CD8+ T cells for adoptive immunotherapy. Blood 2008; 111: 5326–5333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seder RA, Darrah PA, Roederer M . T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol 2008; 8: 247–258.

    Article  CAS  PubMed  Google Scholar 

  49. Kingsman SM, Mitrophanous K, Olsen JC . Potential oncogene activity of the woodchuck hepatitis post-transcriptional regulatory element (WPRE). Gene Ther 2005; 12: 3–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

ECM, MP and HJS designed the research, analysed the data and wrote the paper. MP, JT, SX, LG and DE performed the research. MCG, JT and CP contributed new reagents. MC and DH analysed data. Grant Support: Leukaemia Research, Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E C Morris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perro, M., Tsang, J., Xue, SA. et al. Generation of multi-functional antigen-specific human T-cells by lentiviral TCR gene transfer. Gene Ther 17, 721–732 (2010). https://doi.org/10.1038/gt.2010.4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.4

Keywords

This article is cited by

Search

Quick links